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Preface 

This report outlines an approach for developing an integrated system 

of design tools for designers of complex digital systems.  For the pur- 

pose of the report the terms Computer-Aided Design (CAD) and Design 

Automation (DA) are essentially synonomous and can be used inter- 

changeably.  I tend, however, to apply CAD more to specific tools and DA 

to the overall topic. 

I became interested in this area through the two Microprocessor 

Design courses offered by the Air Force Institute of Technology.  We 

used several CAD programs in producing our design, and, while they were 

very helpful in accomplishing the task, they were not particularly 

user-friendly.  The biggest limitation was that the simulation program 

inputs (or outputs) could not be interfaced directly with the layout 

program.  In wanting to take advantage of the experience gained in those 

courses, I decided to work on the concept of an integrated DA system. 

I wish to acknowledge the tremendous assistance I received in this 

effort from Major Al Ross and Major Hal Carter. As my advisor, Maj. 

Ross inspired my interest in the subject and provided a direction for 

the research. Maj. Carter became almost a co-advisor in helping refine 

numerous aspects of the approach.  The three of us spent many hours in 

discussions which led to most of the concepts and approaches presented 

in this report.  I express my deep gratitude to both individuals for 

their invaluable assistance. 

Thanks also to Dr. Gary Lamont, my third thesis committee member, 

for his efforts to help make this a worthwhile project.  In addition, I 

am indebted to Major Mike Borky who, as an instructor in Digital Compu- 

ter Design, gave me an appreciation for logic-level design. 
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I dedicate this work to my family, who endured three and a half 

years of part-time graduate study on top of my full-time Air Force job. 

To Charlene and our children, Catherine and Barry, a loving thank you. 

Bart Cable 
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AFIT/GCS/EE/Ö2J-7 

Abstract 

This project proposes a structure to integrate a variety of 

Computer-Aided Design tools into a complete design system.  Design aids 

have provided valuable assistance to designers of integrated circuits 

over the last decade.  However, greatly increased circuit complexity, 

with the approach of more than a million devices on a single chip, is 

exceeding the capabilities of current design methods.  Greater automa- 

tion and additional design tools are needed. 

A model is proposed which divides the design process into three 

stages:  Specification, Implementation, and Realization.  The Implemen- 

tation stage is examined in detail.  Design requirements can be descri- 

bed at different levels of abstraction, from a description of overall 

behavior to specific gate-level logic details.  The model attempts to 

satisfy the requirements at the higher levels using existing implementa- 

tions before resorting to the design of new circuits at the lowest 

level. 

The proposed system is an integral part of the Air Force Institute 

of Technology's increased emphasis on Design Automation.  As future 

efforts address more of the details and problem areas, design tools will 

be developed to support it.  The system will be highly flexible, based 

on a great degree of interaction with the user, and adaptable to chan- 

ging technologies and requirements. 
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SUPER-CAD:  AN INTEGRATED STRUCTURE KÜR DESIGN AUTOMATION 

1.  Introduction 

In the last few years, developments in microelectronics technology 

have accelerated rapidly, and the era of VLSI and VHSIC (Very Large 

Scale and Very High Speed Integrated Circuits) has begun.  These advanced 

chips have the potential to contain "hundreds of thousands of tran- 

sistors" (Refs 1:34 and 68).  As Integrated Circuit (IC) chips have 

increased in complexity, the difficulties in design have also increased 

for IC designers.  As a result, the field of Computer-Aided Design (CAD) 

has evolved to assist the designer with many of the "routine and often 

mundane" tasks such as "bookkeeping and consistency checking" in keeping 

crack of the basic elements of  the design (Ref 2:48).  With such help, 

designers have been able to keep up with the rapid advances in IC tech- 

nology.  Yet, much of the design process is still a manual operation 

with the designer creating the specific circuit design himself at the 

logic gate level.  He then uses CAD tools to do automated testing and 

simulations with his circuitry and produce final layouts for IC and cir- 

cuit board fabrication. 

In the VLSI era, as designs are becoming very complex, current CAD 

tools are no longer adequate.  In fact, some observers feel that design 

tools could become the constraining factor that limits the growth of IC 

complexity (Refs 3:3 and 72:94-95).  Thus, Computer-Aided Design has 

become a "critical technology" that requires significant enhancement to 

meet the n'.eds of VLSI in the 80's (Ref 4:3). 

Many research efforts are underway to provide that enhancement. 

I 



This report summarizes much of the recent work and offers an approach to 

join old and new CAD tools into a single design system.  This "Super- 

CAD" would allow a designer to input his requirements and work interac- 

tively with the system to produce a finished design ready for fabrica- 

tion.  Definition of the system has two aims.  First, the system should 

integrate all steps of the design process into a single package. 

Second, it should emphasize designs that use families of existing 1C 

chips.  While the Super-CAD system will be capable of designing new, 

customized circuits, it will attempt to solve the problem with available 

IC's first.  This is becoming increasingly important as designs become 

more sophisticated.  With VLSI promising tremendous flexibility and 

power, existing VLSI circuits may, in many cases, produce more economi- 

cal designs than would the creation of whole new circuits. 

This report will approach the subject in the following manner: 

1.  Present a general view of the problem, meant partially as a 

tutorial on Computer-Aided Design and Design Automation to establish a 

backgound for the research effort. 

1.     Demonstrate the need for an integrated system to support automa- 

ted design. 

3. Define a framework for integrating design tools into a sinple 

structure for digital design in the VLSI era. 

4. Propose a model for developing an important part of the struc- 

ture. 

5. Show its relationship to current and future work of the Air Force 

Institute of Technology and the Air Force. 

6. Identify those areas that either require further development or 

could benefit from future research. 

—    -  - - •  - • -— - - -      II   —1M1 I • •—                - - - •../.. Ll 



The supporting references provide a compilation of much of the work 

that has been done on Design Automation over the last ten years.  While 

this report only touches lightly on many of the sources, the bibliogra- 

phy is quite extensive and provides an excellent summary of current 

activity.  In turn, the references listed within these sources can pro- 

vide further information.  In addition to the references specifically 

cited in the report, the bibliography contains others that also relate 

to Design Automation and Computer-Aided Design. 

Background 

The designers of digital circuitry go through a number of phases 

when they transform the statement of a problem into a completed design. 

One model of this process might divide it into three distinct stages. 

In the first stage, the designers analyze the problem to define the 

requirements and arrive at a set of specifications.  During the next 

stage they might attempt to meet those specifications with currently 

available circuits.  If some or all of the requirements cannot be met, 

they must design new circuits.  Then they run simulations to test their 

designs.  Finally, in the third stage, they develop a layout of their 

circuitry and produce a mask set for fabrication of the IC's and/or cir- 

cuit boards.  These three stages of development can be called Specifica- 

tion, Implementation, and Realization (Ref 13:1322).  (See Figure 1.) 

Design Automation (DA) (including the tools of Computer-Aided Design) 

assists the designer at various points throughout these stages. 

DA can be defined as "the art of utilizing digital computers to help 

generate, check, and record the data and the documents that constitute 

the design of a digital system" (Ref 5:2).  It relieves the designers of 

repetitive manual tasks, reducing time and costs, and allowing them to 

i 
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Requirement 

SPECIFICATION 

Behavioral Specification 

IMPLEMENTATION 

Detailed Design 

REALIZATION 

Completed Design 

Fig 1.  Design Stages (Ref 13:1322) 

devote more attention to design problems (Refs 5:2 and 6:100).  A study 

has shown that, for "aspects of the design that have been automated, 

design time is significantly reduced" (Ref 51:67). 

As integrated circuit technology has evolved, development of design 

aids supporting DA has been largely uncoordinated, with specific systems 

produced to address specific problem areas or technologies. As a 

result, a myriad of CAD systems have been developed in recent years (Ref 

7:1189).  But we are now on the verge of "VLSI systems of enormous func- 

tional power" (Ref 8:137)*.   With the potential for over a million 

*This referenced book by Mead and Conway appears to be the definitive 
text on VLSI electronics. Virtually every entry in the bibliography 
from the last three years has cited it.) 



devices on a single chip (Ref 9:617), it has become increasingly impor- 

tant to "replace the quagmire of standalone [CADJ applications" 

(.Ret 10:126) with integrated DA systems "oriented around a common data 

b^se" (Ref 14:550) and "dedicated to the problems of 1C designers in the 

VLSI era" (Ref 11:552). 

History.  (Refs 7:1189-1190,1197,1190 and 6:89,100) The history of 

design automation shows a gradual development of design tools starting 

in the late 1950's.   "Typical applications were automated logic dia- 

gramming, [computer] back-panel wiring with discrete wires, and elec- 

trical load checking" in 1958 and 1959 (Ref 6:89,100).  The 1960's 

brought printed circuit boards (PCB's) and the use of a large number of 

solid state components.  Design aids at that time focused mainly on cir- 

cuit analysis and simulation techniques for discrete circuits.  Examples 

are NET-1—1964, CIRCUS—1967, and TRAC—1969.  Then integrated circuits 

arrived, and by the early 70's the use of computers became indispensible 

as record-keeping tools and means of verifying the design before a chip 

was manufactured.  IC simulators of that time included BIAS-3—1970; 

CANCER, SLIC, and TIME—1971; ASTAP—1973; and SPICE2—1975.  By the 

middle 70's tools were developed to automatically generate the physical 

layout and interconnections of the components within an IC, for example, 

CRITIC in 1974. 

At this point it became obvious that "computer-aids were a necessity 

in the design of complex IC's, both for physical and for functional 

design and verification" (Ref 7:1190).  Gradually, whole systems of 

loosely-coupled CAD programs have come into being, and CAD techniques 

have also been applied to the design of complex PCB's.  But these pro- 

grams are largely incompatible with each other.  They frequently use a 
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variety of data formats and often require "manual intervention I by the 

designer] to move from one program to another." The only true integra- 

ted DA systems currently in existence are for some "highly specialized 

design approaches" (Ref 7:i189-1190).  Now that the use of complex and 

sophisticated IC's is becoming more widespread, the development of a 

truly integrated system of design tools is becoming a necessity. 

Levels of Abstraction.  As electronic circuitry evolved into more 

complex designs, different ways to represent those designs produced 

hierarchical levels of  ostraction (Ref 7:1190).  While a number of dif- 

ferent levels exist, most of them can be arranged in three general 

levels.  Different authors describe these levels of representation 

somewhat differently (Refs 7, 12, 13).  The Thomas approach was chosen 

for the project because it provides the best overall definition that is 

consistent with the Super-CAD research (Ref 12:1201).  Note that these 

levels are distinct and separate from the three design stages.  The 

levels of abstraction are ways to look at a design primarily within the 

Implementation stage while the design is being created, as shown below. 

Thomas describes the three levels as Behavioral, Functional, and 

Logical (or Physical) (Ref 12:1201).  (Figure 2.)  Each level of 

abstraction deals only with information applicable to that level;  it is 

BEHAVIORAL LEVEL 
Conceptual definition. 

FUNCTIONAL LEVEL 
Operational definition; register transfers. 

LOGICAL LEVEL 
Primitive logic elements. 

Fig 2.  Levels of Abstraction (Ref 12:1201-1202) 
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not concerned with lower levels of detail (Ref 13:1323).  The highest 

Behavior Level provides a "clear conceptual" definition of a digital 

design.  This level does not consider the structure of how system func- 

tions are implemented.  Rather, it specifies the overall behavior of the 

system (e.g., inputs and outputs).  (Ref 12:1202) 

The Functional Level, on the other hand, begins to deal with some of 

the specifics of the design.  It generally defines operations or func- 

tions to be performed (Ref 12:1202) at the register-transfer level.  It 

provides a framework, for interpretation of "a sequence of instructions" 

to cause "action upon a data structure" (Ref 13:1324).  Details "of the 

actual implementation" are still hidden, however.  Those are left to the 

Logical level, which "specifies the interconnection of primitive logic 

elements." The primitive elements can be logic components, like gates 

or flip-flops, or larger modules composed of the basic logic components. 

(Refs 12:1201 and 13:1323) 

Thomas provides an example of the differences between levels.  Sup- 

pose the digital system is to perform the operation "A=B+C".  The 

Behavioral level only views it as "A:=B+C" (":=" means "replaced by") 

where a new value A is generated from values of B and C. The Functional 

level may see it as requiring three registers and an adder.  The adder 

takes the values of B and C from the first two registers and places 

their sum in the third register.  The Logical level of the design may 

actually include a large number of registers and more than one adder, so 

that the operation could be performed by any one of several combinations 

of these components. The "boundary" between the Functional and Logical 

levels may at times be "fuzzy", but the distinction is still between 

specifying an operation and actually implementing it.  (Ref 12:1202-1203) 



As a further example, consider a requirement to design the digital 

circuitry for a simple, four-function calculator.  From the Behavioral 

standpoint the requirement can be described as needing to support the 

four basic operations of addition, subtraction, multiplication, and 

division, plus a few extra parameters such as the number of digits and 

whether chain operations are to be included.  The four operations can be 

expressed in the same "A:=B+C" form as above for addition.  A Functional 

level description, on the other hand, would define the necessary reg- 

isters and functional blocks to perform the operations.  One block 

could represent each operation:  adder, subtractor, multiplier, and 

divider.  Also included at this level would be how the chain operations 

are to be performed; for instance, each operation might have to be com- 

pleted (pressing the "=" button) before the next one can be joined to 

it. 

Finally, at the Logical level details of the actual implementation 

(or possible implementations) are defined.  It is here that the dif- 

ferent possibilities for accomplishing the four operations are ex- 

pressed.  For example, the functional blocks could actually be implemen- 

ted with true hardware modules, such as a multiplier to do multiplica- 

tion.  Or, especially for a simple calculator, all four operations could 

be handled by some form of addition (see Ref 130, Chap. 3) so that only 

an adder and the necess?ry registers and counters might be used. 

Siewiorek describes a "circuit level" below the logical, made up of 

transisters, capacitors, and the like (Ref 13:1323).  but, as we shall 

see, many CAD cools currently support the logical level so the designer 

need not be concerned with the specific elements at the circuit level 

(Ref 25: Part I, 4). 

-'- -        ..... . • .       ....  ^ .      ^. «, 



The design level hierarchy just described provides a mechanism to 

help simplify the task, of the designers,  by being able to express the 

requirements of the design at a higher level of abstraction, they can 

leave management of the details to the computer (Refs 7:1197; 16:85; and 

17:67).  This again saves time and money in the design process (Ref 

15:314).  Research indicates that such high-level representation can be 

successful.  Studies at Carnegie-Mellon University (CMU) have shown 

"that by increasing the level of abstraction of the basic building 

blocks of the design hierarchy . . . , a much improved IIC layoutJ can 

be produced" (Ref 16:89). 

Evolution of the Model 

Up to this point, in the evolution of integrated circuit technology 

and design automation tools, two representations have been described. 

On the one hand, stages of digital design divide the design process into 

three areas.  On the other, the three levels of abstraction provide dif- 

ferent degrees of detail concerning design requirements and implementa- 

tions.  The previous example of an electronic calculator illustrated the 

levels of abstraction.  Extending that example to the design stages, the 

Specification stage takes the requirements and parameters for the calcu- 

lator and turns them into a set of specifications.  The Implementation 

stage produces a design from those specifications, operating at one or 

more of the levels of abstraction.  Then, in Realization the design is 

used to create a layout for the actual digital hardware for the calcula- 

tor. 

Thus, the two representations are not equivalent.  They do, however, 

produce some interesting patterns in the evolution of DA tools and 

models.  First, they highlight a gradual shift from "design of" new 

••-• —~      -*- 
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IC's, which relies on basic gate-level building olocks, to "design with" 

existing IC's, where the IC's themselves are the building blocks.  They 

also show an increasing trend toward integrated DA systems.  Several 

examples represent steps in this evolution and demonstrate how it has 

led tc Super-CAD. 

CLODS.  In the early 1970's several projects here at the Air Force 

Institute of Technology (AFIT) went together to support CLODS, the Com- 

puterized Logic-Oriented Design System.  (.See Refs 18, 19, 20, 21, 22, 

23, and 24.)  CLODS viewed digital design as a six-step process:  t, I) 

"reduction of a higher-order language" (DDL*) to "state tables and 

Boolean equations", (2.) "state table minimization", (3) "state as- 

signment", (4) "logic hardware realization", (.5) "logic diagram documen- 

tation", and (6) "logic circuit simulation" (Ref 24:1-4).  Separate pro- 

grams had been developed for each of these steps, and CLODS drew them 

together into a compatible system.  The system used libraries in secon- 

dary memory to store these programs so that only the "currently execu- 

ting" modules inhabited main memory (Ref 24:16).  An additional project 

produced an extension to CLODS to automate the "design of integrated 

circuit masks" (Ref 19:ii).  Thus CLODS dealt with the Implementation 

and Realization stages of design at the Logical and Functional levels of 

abstraction and integrated several CAD tools. 

Design Courses.  The Microprocessor Design courses here at AFIT 

, currently use the DEC-10 computer of the Avionics Laboratory and several 

, CAD programs (Ref 25).  Figure 3 shows the different phases.  Students 

work up their designs manually at the logic gate level.  They then enter 

*Digital Design Language—a register-transfer language ueveloped by 
Dietmeyer (Ref 66). 

10 

•••» --•• •— • - - 



1 9            >' 

MANUAL 

LOGIC DESIGN 

CONVRT 

FORMATTING 

2            i ' 10           >' 

CODE TOR 

LOGIC k 

MP2DV4 

FORMATTING 

3 ' <* ' 6 11            if 

LOGIC k 

SIMULATIONS 

(I) 
MODIPT TOR 

SCOAP 

(X) 

MODIFT FOR 

CONVRT 

MP2D 

PLACEMENT 

AND ROUTING 

5 f ?             1 r 

V 

12         V 

SCOAP 

TESTABHJTT 

ANALYSIS 

LOGIC 4 RUNS 

FOR CONVRT 

APPLICON 

GRAPHICS 

8 ' 1" ' r 
(X) 

TRANSUTE 
FOR CONVRT 

(IA2CVT) 

ZYNETICS 

PLOTTER 

(X) - Manual Translation Step 

FIG 3.    Microprocessor Design Sequence of Operations  (Ref  25) 
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them into a program called Logic 4, which runs simulations to test con- 

tinuity and timing (Ref 26).  The Logic A representation can also be 

used, with minor modification, by a SCOAP program to "efficiently and 

automatically characterize the testability" of the design (kefs 29:3 and 

30).  Once a design is finalized, it is run through CUNVRT and MP2DV4 

programs to format it for the layout program (kef 27).  The MP2D program 

accomplishes placement of the basic IC components and routing of the 

connections between them (Ref 2b).  The result is a grapnical represen- 

tation which can be interfaced to an Applicon interactive-graphics ter- 

minal and/or sent to a Zynetics Flatbed Plotter.  The final layout can 

also be used to develop a set of masks for IC fabrication.  (kef 25) 

This whole process, then, operates within the Implementation and keal- 

ization stages and uses CAD building blocks at the Logical level, 

(kefer to Chapter II, Translation Between Blocks, for additional discus- 

sion. ) 

Univ. of Conn.  A project at the University of Connecticut has re- 

placed the standard gate-level building block library with a library 

made up of the Intel 3000 family of bit-slice microprocessors.  The 

object is to allow "the designer to operate at a high level of I abstrac- 

tion] in the design process."  Thus he can express his design needs at 

the Functional level and leave the "device details" to be "handled by 

the automated design system".  This system operates essentially in the 

Implementation design stage, although the users do slip into the keal- 

ization stage when they develop a hardware prototype of their designs 

for further testing.  (Ref 31:20-22)  A limitation of the system is that 

it can only produce designs that use combinations of the 3000 series 

chips, but it is a step in the right direction. 

12 
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Lawrence Livermore.  A further step is the work of Matelan and Ross 

for the Lawrence Livermore Laboratory (.LLL).  (Refs 32, 50, 33, 34, and 

35)  Matelan considered the problem of automating more of the design 

functions in developing dedicated real-time control systems.  He pro- 

posed a unique Control System Design Language (CSDL) by which a designer 

could specify a problem.  He sought to simplify the problem specifica- 

tion step and automate hardware selection and software production.  An 

important element was to remove all hardware considerations from the 

problem definition, allowing hardware components to be selected at dif- 

ferent stages as the design evolves.  At the same time the necessary 

software can be developed, aiming for as much concurrent 

hardware/software development as possible.  (Refs 32:1-19; 50:462-463; 

and 33:25) 

Ross extended Matelan1s work by focusing on the automation of 

hardware selection.  He proposed a systematic automated design process. 

Once the designer generates a problem statement in a high level program- 

ming language, the computer goes through several development stages to 

approach the problem.  The key element is a library of pre-designed 

realizations and supporting technologies.  The problem statement is 

specified, tested, and translated into an intermediate form before the 

hardware realization technology is considered.  Ensuing steps choose and 

test a microprocessor family and produce the necessary software.  The 

designer thus exercises creativity in specifying the problem statement, 

and the computer completes the remaining design steps.  (Ref 34:1-8 and 

35:227) 

This work has advanced design automation significantly and is a 

basis upon which Super-CAD is built.  It operates within both 

13 
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Implementation and Specification stages at the Behavioral and Functional 

levels, through a highly integrated system. 

CMU-DA.  The last few years have seen a major undertaking in DA by 

Carnegie-Mellon University.  (Refs 36, 38, 44, 42, 16, 2, 4y, 43, J7, 

45, 48, and 47)  The CMU-DA system is "an approach to translating high 

level behavioral design descriptions into detailed designs at the logic 

description level" (Refs 44:479 and 42:1052).  The project's goal is "to 

provide a structured design tool" which is "responsive to changing tech- 

nology" and helpful to designers in exploring different alternatives for 

implementing a design (Ref 36:93).  Inputs to the system include a 

behavioral description of the problem in ISP (the Instruction Set Pro- 

cessor hardware description language; see Refs 39, 40, 41, and 16), plus 

paramenters of the design ("optimization criteria") and a library of the 

"hardware components available to the design system" (Refs 36:93; 3b:73; 

and 16:86).  (Note:  What the CMU researchers are calling a "behavioral 

description" is really a blending of the Behavioral and Functional 

levels of this project, with many elements from register-transfer theory 

at the lower level.  The "Behavioral level" of the Super-CAD project is 

meant as a true description of overall behavior, quite separate from 

register-transfer level considerations.) 

The input of a behavioral specification, while "characterizing the 

[desiredJ input/output behavior", does not necessarily dictate the 

implementation's "internal structure."  As the design proceeds through 

the CMU-DA system, binding implementation decisions are made "in a top- 

down manner." As each level is traversed, "more and more structural 

detail is frozen", with the "most influential" design decisions being 

made first, "to cut down the design search space."  The result is a 
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"complete hardware specification" expressed "in terms or the basic buil- 

ding blocks" used in the design.  (Rpfs 36:93; 38:73; 16:05; 43:b35; and 

2:50) 

The design system is made up of a number of components (see Kef 3b), 

and research is continuing toward completing them all.  An important 

aspect of the system is that different "design styles" may be used 

(e.g., microprocessors, TTL chips, standard logic cells, etc.) as well 

as different technologies (e.g., TTL versus CMOS).  Flexibility is as- 

sured by the module set library, which allows new modules to be added as 

new VLSI circuits and technologies become available.  The system ultimate- 

ly maps operations derived from the behavioral description to nodules 

from the library based on the design style and technology chosen.  (Refs 

2:49-50; 36:94; 17:68-69; 44:479; and 7:1197) 

The CMU system is another important advancement in integrated design 

automation.  It will automate portions of both the Implementation and 

Realization stages of design, and is based upon a specification ex- 

pressed in the ISP language which operates at the Behavioral and Func- 

tional levels. 

Emergence of Super-CAD.  The evolution-through-example just described 

shows some definite trends.  These trends are summarized in Figure 

4.  (Recall from earlier in the chapter that the three stages and three 

levels are not equivalent.)  The early CLODS work, and current CAD pro- 

grams (exemplified by Logic 4-to-MP2D), deal strictly in the design of_ 

new circuits and/or boards.  While they affect automation at both the 

Implementation and Realization stages of design, they operate solely at 

the Logical level of abstraction.  The University of Connecticut project 

with the Intel 3000 family, though limited, concentrates on automating 
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Che Implementation stage predominately at the Functional level, and 

seeks a design with existing circuits.  The Lawrence Livennore work 

climbs higher by designing with more than one family of microprocessors 

and begins to address problems in the Specification stage and the 

Behavioral level.  The emphasis, however, is still on automated 

Implementation and Functional descriptions.  The CMU-DA project, on the 

other hand, combines Behavioral and Functional level specifications and 

covers both design ^f_ and with.  It does not attempt to automate any of 

the Specification stage. 

With the trends viewed in this manner, it is a logical extension to 

attempt to automate all three stages in the digital design process and 

to address a problem at all three levels of abstraction.  Super-CAD is 

intended to provide that capability and flexibility.  Thus, as shown in 

Figure 4, Super-CAD will automate as much of the Specification, 

Implementation, and Realization stages as possible.  Automation of por- 

tions of the Specification stage will allow the designer to input re- 

quirements in a simpler form than a complex hardware description lan- 

guage.  Also, Super-CAD will operate at all three levels of abstraction, 

not just the Behavioral level.  It will first attempt to complete a 

design at the Behavioral level with existing circuits.  If unsuccessful, 

it will try the same thing at the Functional level.  If that is also 

unsuccessful, it will move to the Logical level, attempt to finish the 

design with available IC's, and produce new circuits for any remaining 

parts of the specification.  Therefore, Super-CAD makes a strong effort 

to satisfy all or part of the requirements with existing IC's before 

resorting to the design of new ones. 

17 

- • -- . ~ - — — • - - -- —'- 



Overview 

The structure of Super-CAD is based upon the design stages of Figure 

1.  This report defines the structure in detail, analyzing these major 

stages in reverse order.  Since the Realization stage is currently the 

most highly automated (Ref 51:60-61), the part of the Super-CAD model 

which draws the automated tools together is described first, including a 

few examples of applicable tools—both those in existence now and those 

that need to be defined.  Next, a detailed model is proposed for automa- 

ting the Implementation stage.  This is an extensive part of the project 

and will include many DA tools that require development.  Finally, the 

Specification block is examined.  Since many important decisions are 

made during this stage, it is the hardest to automate and requires the 

greatest future efforts. 

Chapter II presents the overall philosophy of Super-CAD, explaining 

the general concepts of what the system should do.  Then Chapter III 

describes the Super-CAD model in the sequence given above.  Chapter IV 

ties Super-CAD in with the work in design automation being conducted 

here at AFIT.  Chapter V concludes the report by summarizing the model 

and highlighting the many areas where future research is needed to help 

the model become a reality. 
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II.  Philosophy Behind Super-CAD 

Initial research into design automation for this project revealed 

that a wide variety of CAD programs are available.  Most of them address 

specific areas in DA and generally are not compatible with one another. 

In the midst of this diversity, however, is a common basis for assisting 

the digital designer with routine, repetitive tasks.  Their use has sup- 

ported the development of more complex and sophisticated designs.  But 

with the dawning of the VLSI/VHSIC era, it has become apparent that the 

development of CAD tools needs to be directed into a more coordinated 

effort, and integrated systems that automate virtually every phase of 

digital design should be developed.  Super-CAD is meant to focus atten- 

tion on these needs and provide a framework within which they can be 

satisfied.  It defines an integrated structure that is highly user- 

friendly and flexible, allowing a designer to input a simplified 
i 

description of requirements and interact with the system to produce a 

design.  Or, he may choose to use only a portion of the facilities 

available in Super-CAD; for example, to run simulations on a small cir- 

cuit already designed. 

This chapter presents the overall approach to Super-CAD—some of the 

thoughts behind arriving at an all-encompassing system for design au- 

tomation. After many of these thoughts were organized, a pertinent 

paper by Daniel and Gwyn was discovered which describes work being done 
I 

at Sandia National Laboratories (Ref 52).  It turns out that their ap- 
i 

proach agrees with many of the areas presented in this chapter, inclu- 

ding the use of an overall "Executive" program and supporting a variety 

of existing IC families and technologies. 
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General Philosophy 

Super-CAD will represent an integrated systam of tools, ultimately 

automating portions of all phases of digital design, from inputting a 

set of requirements to producing a mask set for hardware fabrication, 

including the software and/or firmware to operate it.  The goal is to 

allow the designer to input a relatively simple description of the prob- 

lem without having to break it down manually into many details, such as 

those required by a complex hardware development language.  The eventual 

Super-CAD configuration should come as close as possible to producing a 

final design completely automatically, once it receives that simplified 

input.  Even if such a configuration is attained, however, Super-CAD 

must still be a highly interactive, flexible collection of design 

tools—a "toolbox"—that aids the user in any chosen phase of design. 

Flexibility.  It is imperative that the structure of Super-CAD be 

flexible, as follows.  Its actual development will be in stages, with 

individual modules or blocks being completed relatively independently. 

The system should allow these tools to be used separately, once they are 

available.  Translation programs may have to be used between tools, 

although the aim must be for as much standardization as possible so that 

modules can be interfaced easily. 

An early function of Super-CAD will be to draw together many of the 

CAD tools currently in existence.  For instance, the Logic 4/C0NVRT/MP2D 

set of programs described in Chapter I can be incorporated into the sys- 

tem and used separately until interface programs are developed. After 

such tools are interfaced directly into Super-CAD, they can be modified 

and expanded to include a greater number of design building blocks and 

technologies. 
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The key to Super-CAD's flexibility, then, will be a dynamic approacn 

to developing it in stages, adding new tools as they become available, 

and replacing or modifying old ones as necessary.  Included in this 

should be the ability to recover from mistakes or unrealizable direc- 

tions.  Since Super-CAD will be an amalgam of many modules and subsys- 

tems, when one is found to be unproductive or incorrect, it can be re- 

moved and replaced without affecting the whole system. 

User-Friendly.  Super-CAD must be appealing to users from the very 

beginning.  As development commences on individual tools, these must be 

straightforward and easy to use.  The design community will be very 

suspicious of such an all-encompassing system as Super-CAD promises to 

be.  But its early stages should help to lessen such suspicion by 

presenting a system of tools that designers can benefit from.  The tools 

should be in terms the designers are familiar with; Super-CAD should 

speak their language.  As more of the system is filled in, more users 

should find it helpful.  If they are satisfied with what tney have been 

using, they may want to try the new portions.  The aim in the short term 

is to make the system useful for a variety of designers.  In the long 

term, familiarity with the system should allow them to rely on it more 

and more, so that ultimately it can assume most of the design 

functions—though still under their control, if they so choose. 

So, while Super-CAD will evolve into a high level system automating 

the majority of the design steps, it should always retain the "toolbox" 

flavor with the ability to assist designers at any level. 

Executive.  A feature that will make this possible is the use of an 

Executive—a master program to control all the toolbox programs and, 

most importantly, interface with the user.  It is the Executive that 
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will welcome users onto the system and offer them a list of options Ca 

menu) for use of the system.  In the early stages of Super-CAD, the Exec- 

utive will provide access to the available tools, but the user may have 

to manually translate from one block to another.  As the system 

develops, the Executive will take over these chores and provide the 

translation automatically.  At first, such translation between tools may 

be rather unwieldy.  But this will be overcome as the system grows more 

sophisticated.  Old tools can be replaced by new programs that do not 

require translation;  they will interface directly with other modules. 

An important function for the Executive is to keep the designer 

informed of how the design is progressing.  At any time the designer 

should be able to find out which Super-CAD module is currently working 

on the design.  This assumes that major portions of the design are being 

done by the system in an automatic mode.  Equally as important, however, 

would be an interactive mode. 

Interactive.  In the discussion above it is obvious that, to be 

effective, Super-CAD must be highly interactive.  The designer and the 

computer must communicate directly with each other.  As Waxman says, 

this is a "key ingredient" to the "design environment" (Ref 53:54b). 

Many design problems will require that the computer draw the user into 

critical portions of the design process, such as during the development 

of a set of specifications. 

When the problem is first entered, the Executive can help the user 

properly format the data.  It can provide specific "prompts" for what 

"is required next" (Ref 54:347).  When the user needs more information, 

the Executive should provide a "HELP" file for any necessary assistance 

(Ref 54:348).  As the design progresses, the interactive environment 
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will allow the designer to help the computer solve specific design prob- 

lems, for example, timing considerations.  This may force the designer 

to think through the problem further and possibly modify some of the 

input parameters.  Or, when the user is monitoring the output of an 

automatic part of the design operations and detects an error, he can 

"stop the computation" and attempt to correct the problem before proces- 

sing continues (Ref 55:135b). 

With this highly interactive environment and the many functions 

included in Super-CAD, sophisticated graphics terminals will be a neces- 

sity.  Besides providing for various kinds of data entry (Ref 5b:109), 

they will support interactive design modification and layout checking in 

the Realization stage.  Examples of such systems are APPLICUN and CALMA 

(Ref 57:1285).  Also, a Graphics Work Station is being designed at AflT 

(Ref 58), and it will support Super-CAD. 

Database.  Another feature that is essential to the sophistication 

and flexibility of Super-CAD is an effective database system.  It is a 

crucial element in maintaining the vast libraries of design buildin? 

blocks, from families of integrated circuits to basic gate-level 

elements in various IC technologies.  It can contain previous problem 

solutions which might be useful in future applications.  It can also 

store new building blocks, or "macros", developed by current users for 

later use, and keep track of current designs in various stages of com- 

pletion (Ref 6:90-91). 

The need for a common database in an integrated DA system like 

Super-CAD has been widely proclaimed.  (See Refs 59, 54, 14, t>0, 61, 62, 

and 63.)  Such a database "integrates, organizes, and controls" (Ref 

60:285) great amounts of "design data" (Ref 63:399) throughout the 
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growth of a design in such a system (Refs 62:394 and 64:1U4).  From the 

standpoint of Super-CAD users, the "'actual' structure" of the database 

is not important as long as the "'implied' structure" is easy to use 

(Ref 54:337).  Also, the flexibility of Super-CAD dictates that the 

database "allow new elements to be added without disruption ... as 

technology evolves" (Ref 6:93).  (.Comprehensive discussions of design 

automation databases can be found in Losleben, Ref 54, and Eastman, Ref 

59.)  A database that can support Super-CAD is currently under design at 

AFIT (Ref 65). 

Conclusion.  The general philosophy of Super-CAD promotes a system 

of great flexibility and usefulness, supported by interactive graphics 

terminals, a dynamic Executive, and a comprehensive database.  It will 

offer many aids to the digital designer and allow him to use any tool or 

group of tools interactively or automatically.  It can serve as pad- 

and-pencil for the designer to work, up his design at the logical level, 

or provide a library of possible implementations at functional and 

behavioral levels. 

For example, suppose someone needs an analog-to-digital converter. 

The ultimate Super-CAD configuration will permit him to input that re- 

quirement in one simple statement, such as "A/D Converter."  Super-CAD 

would respond by asking for the desired parameters for the component or 

by offering a selection of components and their specifications.  Through 

this interactive process the user can select his converter from those 

available and receive a printout with the interconnections and instruc- 

tions for use.  This operation can thus replace the process of manually 

looking through all the data books to find the right component.  Another 

case might be where a user inputs a set of requirements in a high level 
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language and interacts with the system to receive as output a wiring 

list and selected IC's to do the job, plus the binary code for ROM 

chips—or even a full PCB design. 

As the system is developed in stages and users come to rely on the 

tools it offers, it will have a greater chance for acceptance at tne 

higher levels as a total design package.  Its continued acceptance will 

be supported by its adaptability to advancing technology and the acces- 

sibility of its tools at the lower levels. 

Philosophy Extensions 

In preparation for the next chapter's discussion of the Super-CAD 

model, this section offers some intermediate details as an extension to 

the general philosophy. 

Process Blocks.  As will be presented in Chapter III, the Super-CAD 

model is developed using the top-down design methodology, to provide 

greater detail with each succeeding step.  A representation used in the 

model is the process block of Figure 5(a). As shown, it can represent 

the whole Super-CAD system.  A set of requirements is the input, and a 

completed design is the output.  It can also be a representation of the 

individual modules at all levels in the model.  Applying the concept of 

functional decomposition (in the software sense), each block can be 

expanded internally, providing more detail at the next lower level. 

Each such process is defined by the data that is available at the input 

and the data that is desired at the output. 

Figure 5(b) gives a more detailed view of the process block.  Again, 

it may represent either the highest level of the system or any one of 

the lower level blocks.  In some cases at the lower levels, parts of the 

diagram may not apply or might have to be modified;  e.g., placement- 
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and-routing processes apply only to hardware. 

That example highlights two important points.  First of all, the 

process block really represents design automation tools or sets of 

tools.  This is true at all levels of the model.  At the top, Super-CAU 

itself is a tool that produces a completed design.  Near the bottom, the 

placement-and-routing process is a tool that produces a layout for an 

integrated circuit or printed circuit board.  Secondly, a process block 

may contain more than one module at the next lower level.  For instance, 

at certain points in the model hardware and software outputs will split. 

They may conduct some functions in parallel (.such as simulation and tes- 

ting) but others independently (e.g., placement-and-routing). 

Referring again to Figure 5(b), and assuming it applies to any module 

in the model, the "Input" arrow depends upon what the block is inter- 

faced to, such as the output from a previous block.  The "Database" is 

as described earlier in this chapter, with libraries of existing cir- 

cuits, previous designs, and current designs-in-progress.  "User Inter- 

action" was also explained previously.  The outputs on the right may be 

absent, or present in various forms, as you proceed through the model. 

In many cases they will be lumped together in intermediate stages of the 

design before they are broken out separately. 

As mentioned earlier, the inside of the process block depends upon 

the available inputs and desired outputs.  In many instances the process 

may be thought of as "Synthesis" and/or "Analysis".  The synthesis por- 

tion creates or produces, and the analysis portion tests or examines. 

Thus, in the Super-CAD model, a process block could merely be a decision 

point where an input is tested to determine which module to activate 

next. 

27 

 *- ..  .   _. .    ..   .   _«.. •..._. . ... 



Translation between Blocks.  (Kefs 25, 2b, 27, and 26)  Returning to 

the earlier discussion of how Super-CAD will initially incorporate such 

tools as Logic 4 and MP2D, this process should be examined in more de- 

tail.  (See Figure 3.)  Actual use of these CAD tools requires many 

translations to get from an initial gate-level logic design to a final 

IC layout.  First of all, the input to Logic 4 to run circuit simula- 

tions will not produce an output that can be used by the next program, 

CONVRT.  Instead, a modified input has to be run through Logic 4, which 

results in an output full of "warning" messages.  That output is then 

run through a locally-produced program, L42CVT, to strip away the war- 

nings and format the whole thing for CONVRT.  The alternative is to 

manually create a new file of the circuitry in the proper CONVRT 

format—more straightforward perhaps, but much more work.  Even tnen the 

design still must go through two formatting programs, CONVRT and MP2DV4, 

before it can be accepted by MP2D for layout.  Thus, only five of the 13 

blocks are actual productive processes:  1, 3, 5, 11, and 13.  The rest 

are either input processes, manual translations, or formatting 

programs—each requiring direct action from the user. 

Super-CAD will help designers to overcome such problems.  In this 

instance it would provide automatic translation.  If the user inputs a 

logic design, Super-CAD can format it for simulation and, upon suc- 

cessful completion, format it for CONVRT—all automatically.  This is 

but one example of how the Super-CAD system will remove more of the 

drudgery currently facing digital designers. 

Translating User Input.  An extension to the above discussion in- 

volves different input languages,  while Super-CAD should ultimately be 

best addressed through an easy-to-use, high level language, it can serve 
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many more users by accepting languages they are already comfortable 

with.  Much digital design work, is being done with Register-Transfer 

Languages (RTL's) (Ret 66) (e.g., ISP used in the CML'-ÜA project).  if a 

user wishes to enter design requirements in an RTL, the Executive can 

call a conversion program to translate that input tor the applicable 

module. 

Testability.  Digital design using VLSI circuits should consider the 

issue of testability early in the design process.  The time and costs 

involved require that most chips work properly the first time.  The 

Super-CAD system, by emphasizing designs with available circuits, must 

assure that testaoility is included when different modules and circuits 

are interfaced togetner.  Self-test capabilities should be made a part 

of the design as much as possible.  Throughout the development of 

Super-CAD, then, testability should be strongly considered early in the 

design phases and at all levels of abstraction. 

Important Questions 

The above discussions on the general philosophy and some of the 

details involved in Super-CAD lead to questions that should be con- 

sidered as the model is examined in the next chapter. 

The Model.  A number of steps are required between entering design 

requirements and producing a completed design based on a combination of 

new and existing chips.  What are these steps, and what tools and tech- 

niques can help automate the ones done manually in the past? 

Languages.  An important consideration is the use of languages in 

the system.  Possibilities range from using a high order language (HOL) 

at as many levels as possible, to describing design problems in a 

hardware description language (HDL) or a register-transfer language 
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(RTL).  Is one language enough?  Perhaps the system can start with a 

structured HDL, such as ISP, and evolve to simpler languages and higher 

level descriptions. 

Hardware-Software.  Software development must be considered, and the 

point at which software is separated from hardware can be important. 

Where should this point be, and what problems can arise when it is a 

fixed point?  With the integration of hardware and software processes in 

this model, some software tools and techniques might be adaptable to 

hardware development.  Also, Software Engineering techniques could pro- 

vide effective tools for the system. 

Process Blocks and Tools.  In the expansion of the model, can the 

process blocks be decomposed in alternate ways?  Since each block may 

contain a set of design tools, these should be able to work together and 

also interface with tools in other blocks.  Current CAD tools can be 

integrated into the system along with newly defined ones. 

Database.  Can the system be database-dependent rather than 

language-dependent, translating whatever language the designer wishes to 

use into the form needed by the database system? 

Artificial Intelligence.  Artificial intelligence techniques will 

become increasingly important in design automation (Ref 67).  Can they 

be used effectively in implementing one or more tools for Super-CAD? 

These are just a few of the important areas to be examined in the 

development of the Super-CAD model.  Most are addressed in Chapter III. 

Those that are not, plus additional questions that should be considered 

in future work, are discussed in Chapter V. 

Summary 

Before proceeding to the actual model ii Chapter III,  it is 
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important to sum up the Super-CAD philosophy as follows: 

A project of the size of Super-CAD is larger than a single Master's 

Thesis can hope to define adequately.  Thus, this report adopts a 

somewhat lofty, philosophical approach to attempt to grasp the "big pic- 

ture" of how it all should go together.  It could not possibly include 

all the recent work that has been done in CAD/DA.  At times, important 

points may be oversimplified or obvious points may be overemphasized. 

But the overall goal is a flexible and adaptable system.  This ini- 

tial definition must also be flexible/adaptable, and it will become more 

detailed and specific as work is done by others to support it.  This 

extends to many of the decisions made in developing the model; details 

are presented as suggested ways of implementing the system, not as the 

only—or even the best—answers.  Besides offering an overall structure 

to get things started, the aim is to inspire further thinking and 

research.  If portions are found to be oversimplified or erroneous, 

i 
perhaps such discoveries will motivate work to be done to correct the 

deficiencies, better define the structure, and help fill in parts of the 

system. 

31 

•*- - - 



—— 

III.  Tne Super-CAD Model 

Introduction 

As indicated in the previous two chapters, the main goal of this 

project is to define a structure for an integrated design automation 

system.  A model is developed to provide that definition, and this chap- 

ter describes the model.  Just as top-down and structured design tech- 

niques can be applied to the design of digital circuits and systems, they 

are applied to the development of the Super-CAD model.  Yourdon defines 

structured design as "the art of designing the components of a system 

and the interrelationship between those components in the best possible 

way" (Ref 70:7).  That philosophy is employed in tne design of the 

model, 

i The top-down methodology is also used in presenting the model in 

this chapter.  A systematic approach first gives a general description, 

then decomposes it into greater levels of detail (Refs 54:329 and 

69:618).  The design stages (Figure 1) will be examined in reverse or- 

der.  The Realization stage, where the least new work is required, is 

analyzed first.  Then the Implementation stage is examined in great 

detail.  Breuer says that "logic design requires over 5U percent of the 

total design effort, yet few automated tools" are available to support 

it (Ref 51:68).  This is the major area of emphasis in the Sup;r-CAD 

model.  Finally, the Specification stage, where the greatest future work 
i 

will be required, is presented in general terms. 
I 

It is important to point out that this presentation of the model is 

one example of how the system can be implemented and is not meant to 

rigidly bind follow-on work.  Future efforts will determine the actual 

details of implementation as Super-CAD is developed.  Portions of the 
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model can be examined in greater detail and modified as necessary. 

Assumptions.  To facilitate the development of the high-level 

Super-CAD model, several assumptions have been made: 

1. When a specification for a problem is partitioned into subsets, 

the subsets are assumed to be mutually exclusive.  In other words, no 

part of one subset can be part of any other.  For example, if a specifi- 

cation included a particular computer instruction set, subsets could be 

made up of specific instructions that did not overlap.  (This does not 

mean they cannot interact.  Some instructions might rely on others, so 

that a modification to one might impact several.)  This assumption sim- 

plifies the part of the model where individual subsets are considered 

for implementation.  It assures that a specific, exact implementation of 

one subset does not affect any others.  (The concept of close implemen- 

tations is examined in section 2.1.1.)  Since some problem requirements 

may not be partitionable into mutually exclusive subsets, the model may 

not be effective in those cases. 

2. The point where hardware and software designs separate from each 

other is placed arbitrarily at a specific location in the Realization 

stage.  This simplifies the presentation of the model, but also limits 

its flexibility.  Refer to the Realization section, block 3.2.3, for a 

further descussion of this subject. 

3. Thomas describes two major parts of a digital system:  control 

and data (Ref 12:1201).  These are not treated separately here, since 

this model is general in nature and not concerned with the differences. 

Also, the designer may incorporate his own partitioning of data and con- 

trol by the nature of his definition of requirements and specifications. 

Detailed later work, should consider them individually. 
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Lach of these assumptions relates to an important area in digital 

design.  Future efforts to carry on the work, of this project can ennance 

it by removing the assumptions and making the model applicable to more 

general cases. 

Notation and Conventions.  Presentation of the model relies heavily 

upon representative diagrams.  Several approaches are combined in de- 

fining the Super-CAD structure.  Principles of structured design are 

used as much as possible to show, at least at the higher levels, major 

process blocks with only one input and one output.  Although the lower 

levels stray from this occasionally, the overall result still actively 

supports structured design.  (See Ref 70.)  Some of the concepts of Data 

Flow Diagrams (DFD's) (.Ref 71) are incorporated also.  The model dia- 

grams combine DFD and flowchart conventions to show data and control 

together.  Data flows are labeled using DeMarco's hyphen convention, and 

they may  include more that one data element.  Process blocks use 

flowchart conventions—rectangles or diamonds—and interaction with the 

user is shown with circles.  Elements of the database are indicated by 

straight lines, similar to DFD files.  (.Ref 71:Chap. 5) 

A key to the model representation is the use of hierarchical levels. 

Again following DeMarco, each succeeding level is numbered with an addi- 

tional decimal point.  (For example, 2, 2.1, 2.1.1, etc.)  Each separate 

diagram is a decompostion of only one "parent" process block.  When pro- 

cess numbers become unwieldy, only the final digit will be shown on a 

particular diagram.  DeMarco continues leveling until processes can no 

longer be divided into smaller pieces ("functional primitives").  In 

many cases, the Super-CAD diagrams do not go all the way to the primi- 

tive level, since further decomposition will depend on future research. 
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(Ref 71:Chap. 7) 

The important thing about the diagrams is that they provide a sys- 

tematic view of the Super-CAD structure,  by following the numbering 

convention, any one process block can be traced down to its lowest level 

of decomposition.  Also, this approach allows us to examine one part ot 

the model at a time, with increasing levels of detail. 

The diagrams for the model are presented throughout this chapter and 

are repeated in the Appendix in a continuous set of figures for easy 

reference. 

Example.  In Chapter I the example of an electronic calculator helped 

demonstrate the levels of abstraction ana stages of design used in 

this project.  In this chapter a more complex example is used to illus- 

trate different parts of the model.  It is taken from "MADAM":  The 

Micro Ada Machine Project, in which this researcher participated (Kef 

25).  The aim of the project was to design a microprocessor that used 

machine instructions corresponding to the pseudo-code generated by an 

Ada compiler.  It was based on an instruction set previously defined by 

Garlington (Ref 129).  The MADAM project succeeded in producing module 

designs for a major portion of the microprocessor to support a subset of 

the designated instructions. 

The Model 

"Digital system design is, in fact, a sequence of steps and itera- 

tions which aim at turning an idea into a physically realized system." 

Developing "programmed computer aids" for such design efforts requires 

that "some model [of thatj process must be constructed" (Ref 12:1201). 

Figure 6 shows the overall process block for the Super-CAD model, ana 

Figure 7 is the next level showing the three design stages described in 
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Chapter I. Design should start with the input or a requirement at the 

top. By the time it has progressed through block 2, a detailed design 

has been generated.  Block 3 turns it into a Realization. 

Realization.  The Realization stage takes tne design created in 

block 2 and produces the actual physical design, with associated 

software, ready for fabrication.  Figure 8 indicates two main divisions 

within block 3. 

3.1. The first division (Figure 9) partitions (3.1.1} the de- 

tailed design along the boundaries of the separate IC's defined in the 

Implementation stage, and then separates hardware and software (3.1.2). 

(The Implementation stage, block 2 in Figure 7, is described later in 

the chapter.)  The tools to accomplish these tasks are to be detined as 

the Super-CAD structure is filled in.  In this case, they will be 

straightforward programs that recognize the divisions among the dif- 

ferent IC's and between hardware and software already delineated during 

Implementation.  They will assure that the data is structured to be 

split up by later process blocks.  For example, the MADAM project designed 

separate modules for a number of functions.  Many were combined to 

run simulations and test interfaces during Implementation.  If the nod- 

ules represented different IC's, block 3.1.1 would prepare the data so 

the boundaries between IC's were clear and the IC's could be separated 

in later steps.  (Note in Figure 9 the use of the symbol  /" to indicate 

a process block number that has no lower level diagram.) 

3.2. The second division within block 3 is where most of the 

Realization work is done:  layout of the IC's and/or PCB's and coding of 

the software.  Figure 10 gives the expanded view of the constituent 

blocks. 
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3.2.1. The first block divides the hardware and software parts 

of the design, sending them to their respective process blocks.  Note 

that many of the decision blocks in the model function like tnis one. 

They may represent iterative processes with several layers and more than 

one output.  As in this case, the flow of data and control caay exit ehe 

block by two or more paths at the same time.  Thus, blocks 3.2.2 and 

3.2.3 can operate concurrently. 

3.2.2. On the hardware side, the system prepares a layout of 

any newly designed IC's (Figure 11). 

3.2.2.1. First, the blocks which can be realized by existing 

IC's are separated. 

3.2.2.2. The new IC blocks are transformed into IC layouts by 

the placement-and-routing programs.  MP2D (Ref 28) is a prime example of 

such a tool.  This area has received wide attention in recent years. 

Reitmeyer describes several systems under development, some of which are 

extensions to UP2D (Ref 3).  Tobias discusses several layout methods and 

highlights work being done at Caltech on "bristle Blocks, a silicon com- 

piler" (Ref   72:98-99).  (See references 73, 74, 69, and 12 for details 

of the system.)  Many othei." layout systems are also being developed (see 

Refs 57, 75-79, and 92), and a project is under way at AF1T to apply 

artificial intelligence principles to the layout problem (Ref 8b).  The 

MADAM project used MP2D to run a sample layout for its hardware stack 

design. 

3.2.2.3. After placement-and-routing, the layouts for the new 

IC's can be examined by the user at a graphics terminal. At this point, 

the user may malce changes to the layout through the interactive graphics 

system.  Notable examples of such tools are "systems offered by Calma, 
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Applicon, and Computer Vision" (Ref 72:98,).  In addition to Delng able 

to analyze and modify the layouts generated by Super-CAD, designers may 

also "directly draw . . . layout patterns on [the] CRT display" (Ref 

72:90) if they so desire.  This permits simpler designs to De input to 

Super-CAD to, for example, develop a mask, set or plotter diagram.  An 

additional tool here is the Graphics Work Station under development at 

AFIT (Ref 5ö).  An Applicon was available for the MADAM project and 

could have been used to examine and modify the stack design, if neces- 

sary. 

3.2.2.4. After the layout is finalized, the system will gen- 

erate plotter diagrams and a set of masks for the new IC's.  The Zy- 

netics Flatbed Plotter is an example tool for drawing the diagrams (Ref 

25).  Also, several projects are underway to enhance layout drafting for 

mask set production; for example, LTX (Ref ÖÜ).  Actual production at 

the present time is largely a manual process.  Work is needed in this 

area to draw it completely into the Super-CAD system.  At this point in 

the MADAM example, a layout diagram of the hardware stack was made on 

the Zynetics plotter. 

3.2.2.5. The final block of Figure 11 catalogs the physical 

characteristics (pin-outs, dimensions, etc.) of both new and existing 

IC's (right and left paths from 3.2.2.1) for use in later PCB design. 

This information comes from the database libraries for the existing 

chips and from the final layout design for the new chips. 

Of course, the user may not wish to go on to circuit board design. 

With Super-CAD he may chose to terminate the design process here at 

block 3.2.2 and receive his IC design and a mask set as output.  Alter- 

nately, a designer could chose to start using the system at this 
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locacion. Working through the Executive, he couid enter the character- 

istics of a set of chips at block 3.2.2.5 for designing a complete cir- 

cuit board. 

The experiences in the tLADAM project point out how important this 

area of IC layout will be in Super-CAl).  Only a sample layout for the 

hardware stack was run because the CAD system could not support a design 

of MADAM's size.  Logic 4 simulations could not be performed with more 

than a couple of modules at a time (see the Implementation section 

below), and MP2D was similarly limited (Ref 25).  Super-CAD will over- 

come these deficiencies and be able to handle complete VLSI designs. 

3.2.3.  Returning to Figure 1U, on the software side the system 

proceeds to produce the software portion of the design.  As Super-LAD is 

currently planned, software design is essentially conducted in conjunc- 

tion with the hardware design during the entire Implementation stage. 

This is facilitated by the use of existing families of IC's to fill the 

requirements of the problem.  At the same time, existing software mod- 

ules to operate those IC's will be available in the database,  AS fami- 

lies of IC's are selected, software modules will also be selected and 

modified as necessary to interface with the whole system and satisfy 

specification requirements.  Also, it is possible to assign different 

function, »rit the problem specification to either hardware, software, or 

firmware, and the decision can often be delayed (Ref 54:332) down to the 

logic level of abstraction.  When suitable software modules are not 

available, Super-CAD will design them (or assist in their design) during 

the logic design portion of Implementation. 

Once all modules are complete, and the hardware and software designs 

have been split up, block 3.2 3 finalizes the software (Figure 12). 
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3.2.3.1. Under current Software Engineering techniques, sys- 

tem software follows a software development cycle (Refs 81-64 and 127). 

Super-CAD will handle the requirements and design portions of the cycle 

in the Specification and Implementation stages.  Existing software mod- 

ules selected during Implementation will already have been coded and 

tested.  Any new or modified modules, plus the portions of the software 

design that put it all together to meet the specification, will be 

handled by this block and the one following.  Coding and debugging is 

still a predominantly manual process, but Irvine and rirackett descrioe a 

Software Engineering Facility (SEF) which could lead to an effective 

Super-CAD tool for automating it (Ref 85). 

3.2.3.2. Test and integration of the new code is conducted 

next, and the SEF would be of use here, also.  For Super-CAD to be ef- 

fective, other automation tools will have to be developed in this area. 

A current AFIT project will create an automated software development 

environment, integrating available software engineering tools and tech- 

niques and developing new ones (Ref 121).  When complete, it will be an 

important part of Super-CAD.  In addition, Super-CAD should ultimately 

provide an interactive facility to aid designers who want to create 

their own software. 

The MADAM project did not originally include software.  If future 

projects were to complete the MADAM design and approach the software 

aspects, these last two blocks of Super-CAD could be extremely helpful 

in producing the software to run the machine. 

3.2.3.3. An important decision is whether to implement 

software in firmware or not.  Firmware is computer "circuitry which per- 

forms the functions of program instructions" (Ref 131:206)«  it can be 
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thought of as "part hardware and part software":  "microprograms" that 

are stored permanently in RUM (read-only memory) Ilj's (Kef 132:2-33). 

Thus, firmware "generally refers to software that has been made opera- 

tionally permanent by storing it in a type of hardware".  It allows 

"many repetitive tasks" to be "hard wired" into the computer for greater 

efficiency.  (Ref 131:207)  This block, of the model will, with r.he in- 

teractive help of the user, separate the portions of software to be 

located in firmware (e.g., programs for embedded computer systems in 

aircraft). 

3.2.3.4. The blocks that are to become firmware are then for- 

mally organized into the firmware design. Special tools must be created 

to accomplish this task. 

3.2.3.5. Next, the physical characteristics of tne firmware 

IC's will be cataloged. 

3.2.3.6. The firmware blocks will rejoin the remaining 

software blocks for the full software/firmware design. 

3.2.4.  From Figure 10, the circuit board layout block is expan- 

ded in Figure 13. 

3.2.4.1. The first step structures the data previously ca- 

taloged on the characteristics of the hardware and firmware IC's, for 

use by the layout program. 

3.2.4.2. Then the PCB layout is generated.  Souicup likens 

this problem to that of an IC layout (kef 57:1201).  This is another 

area where many current CAD tools may be brought into Super-CAD.  Some 

examples are NOMAD (Refs 87 and 88), DASLL (Ref 89), and BRAIN (Ref 90). 

Also, a research project on PCB routing is in progress at AFIT (Ref 91). 

3.2.4.3. The next block is similar to 3.2.2.4 for IC layouts. 

47 



3-2.*» 
Hardware/Firnware- 
Characteristics 

.1/         \l 

JOIN IC 
CHARACTERISTICS 

IC- 
Characteristics 

.2/          V 

GENERATE 
PCB PUCEMENT 

& ROUTING 

PCB- 
Layout 

•2/       \ I 

REPINE 

Inte rac tion /^ 

(USER) 

LAYOUT 

•V      \ 

Final- 
PCB-La; 

1 

pout 

GENERATE 
PLOTTER DIAGRAM 

& PCB 
MASK SET 

\ 

Hardwar 
Design 

1 

9- 

FIG 13.    Block. 3.2.4 

48 

        —-•• -• ••• •• —-•- ——-*• 



— 

where ehe user can refine or modify the final layout.  The same tools 

apply. 

3.2.4.4.  This step is also similar to an earlier one tor 

IC's, 3.2.2.7.  The same plotting tools are used, and—as before—more 

work, is needed to automate mask, set production. 

3.2.5.  The final block in Figure 1U is where the complete 

hardware and software designs are joined together to provide the total 

system package for the user.  The fact that this block is not decomposed 

beyond Figure 10 may be misleading.  It will incorporate many end-oi- 

design operations, such as formatting the hardware and software portions 

for output, and requires future work to be defined fully. 

This completes the discussion of block 3, the Realization stage.  We 

have seen how the development of MADAM paralleled many of the steps 

given in this stage.  That project could have benefitted significantly 

from a system like Super-CAD.  The MADAM example is used with greater 

detail in the next section, which examines the Implementation stage. 

Implementation.  (,Block 2, Figure 7)  The major emphasis of this 

project is on Implementation.  Thus, this part of the Super-CAD model is 

the most developed.  Figure 14 shows Implementation broken up into two 

main blocks.  It is assumed that the Specification stage (block 1, to be 

described later) has produced a behavioral specification as input to 

this stage.  Partitioning of the problem into a suitable specification 

will be discussed in the Specification section below.  The important 

thing is that the specification must be structured enough to allow sub- 

set partitioning for use in the Implementation stage. 

2.1.  Super-CAD attempts to complete a design at as high a level 

of abstraction as possible.  Chapter I showed that this can simplify the 
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design process—by masking many lower level details—and produce improved 

designs more efficiently.  Referring to Figure 15, the problem is 

attacked first at the Behavioral level.  If all or part of it cannot be 

solved with existing implementations at that level, Super-CAD takes what 

is left to the Functional level.  If any part of the problem is still 

not implemented, it goes to the Logical level for final implementation. 

At any step, whenever all subsets of the specification have Deen satis- 

fied, the design is finisned.  Then all that remains is to interface the 

constituent implementations, including any bits-and-pieces that must be 

added, to complete the design. 

The result of this approach is a top-down design, with implementa- 

tions at the highest possible level.  As discussed earlier, this is 

essential if VLSI/VHSIC design is to be effective (,Ref 57:1302).  The 

strength of this system is that it satisfies as many specification sub- 

sets as possible by mapping them to appropriate existing implementations 

in the database libraries.  It filters down to the level where enougn 

details are present to complete the design, including, in some cases, 

synthesis of new circuits at the logic level. 

The process is supported by libraries of components at all levels 

(Ref 52:92), with new families being added as they become available. 

The flexibility of the system is further enhanced by allowing the user 

to choose the mode of design.  As we shall ^oon see, the normal mode is 

highly interactive.  Working through the Executive program (Chapter II; 

the designer can help the computer to solve difficult parts of the 

design; for example, where existing implementations are only "close" to 

the specification requirements.  On the other hand, it will be possible 

for him to prohibit any c lose solutions and force the design all tne way 
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to Che Logical level.  This might also be accomplished by allowing him 

to select only the logic library so that the specification automatically 

falls through to total synthesis at the logic design level. 

Another choice that would deny any close implementations would De 

the automatic mode.  In this case, the designer could input his re- 

quirements and wait to see if Super-CAU can complete a design without 

his help.  Then if it failed, he could try again interactively. 

A number of tools are under development that can be applied to digi- 

tal design at the level of block 2.1.  While most are not compatible 

with Super-CAD, some of their techniques are important and need to be 

considered as Super-CAD is further developed.  (See Refs 93-I0Ü, lib, 

and 35.)  Some of these tools are Hardware Description or Register- 

Transfer Languages.  It should be possiDle to allow a user to bypass 

Super-CAD's Specification stage and enter his requirements in any one of 

these languages.  The system would need suitable translation programs to 

transform the input for use by the blocks within 2.1. 

2.1.1.  The Behavioral level is divided into two portions 

(Figure lb).  The first attempts to implement the complete behavioral 

specification at one time, by mapping the whole specification to an 

available implementation or set of implementations. 

2.1.1.1.  Figure 17 shows this block decomposed to its lowest 

level for this report.  Notice that, because of the length of the num- 

bers at this level, only the final digit is shown on each individual 

block.  Also, since this is the final level of division—with many more 

blocks in later figures—the * /" convention is no longer followed. 

Whenever the abbreviated numbers are used, no further decompositions are 

present.  The abbreviated numbers will also be used for the paragraph 
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headings. 

. 1.  The first block is responsible tor comparing the 

behavioral specification with tne behavioral libraries to determine if 

families of circuits can be found to implement the complete specifica- 

tion.  If so, the design is complete and it is sent on to block 2.1.5 

(.Figure 15).  If not, the comparison goes to the next block. 

In the MADAM microprocessor example, an existing processor family 

might be able to satisfy all of the specifications and perform the Ada 

subset.  Of course, the user would still have the option or rejecting 

the implementation if he was not satisfied with its performance charac- 

teristics, possibly in areas he had failed to empnasize during Specifi- 

cation. 

.2.  In the next block, a routine determines if any or the 

library solutions are close enough to the specification for possible 

use, depending on the desires of the user and his ability to modify the 

specification.  If not, the specification is sent out to block 2.1.1.2 

(.Figure lb). 

.3.  But if a close solution is available, the block in- 

teracts with the user to decide if it applies.  (.In the "automatic" 

mode, "no" would be the only option nere.)  Again, if the answer is 

"no", the specification is sent to 2.1.1.2. 

.4.  If the answer is "yes", however, the user can modify 

the specification interactively, and send it back for another try. 

An example of a close implementation for MADAM might be where all 

but one of the instructions could be performed (e.g., a stack manipula- 

tion instruction (Ref 25: Part I, 9)).  It would be up to the user to 

decide if that instruction is really necessary or could be accomplished 

56 

- • • •' ••-->• - - - •• '<• * 



a different way. 

2.1.1.2.  If the system cannot satisty tue whole specifica- 

tion, 2.1.1.2 attempts to implement subsets (.Figure Id). 

.1.  Partitioning of the specification is discussed below 

under the Specification block, and Super-CAD will perform the parti- 

tioning in that stage.  (An alternative would be to accomplish it here 

at the beginning of 2.1.1.2.)  In MADAM the partitioning might be 

strictly between the individual instructions.  Block .1 divides tne 

specification according to the partitions and assigns indexes through a 

simple "FOR" loop. 

.2.  This block initializes the index to 1. 

.3.  Next, the currently indexed subset is designated and 

sent to the following block. 

.4.  The subset is compared to existing circuit behaviors to 

find an implementation.  In the case of a MADAM behavioral subset made 

up of one or more individual instructions, an implementation might be 

available to perform those instructions. 

.5.  If one is found, it is identified (e.g., by entering an 

identifier in a table of implementations). 

.b.  If not, the subset comparison is examined for a solu- 

tion that is close.  As before, a close solution is one that meets most, 

but not all, of the specifications of the subset.  For example, the 

MADAM instructions for manipulating the stack architecture may not com- 

pletely match up with any available implementations,  but it might be 

worthwhile to consider a change in the requirements to benefit from an 

existing behavioral implementation. 

.7.  If none is found, the subset is identified as not 
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implemented.  (.Again, a special table could be used.,) 

.8.  On the other hand, when a close solution is found, 

Super—CAD asks the user if he can modify the specification for that sub- 

set to be implemented.  A "no" answer sends the subset to block .7 to De 

identified as above. 

.9.  A "yes" allows the user to modify the specification. 

With a MADAM stack instruction, he could revise the requirements to fit 

the existing solution. 

.1U.  Then the system maps the subset to the implementation. 

.11.  At this point it is important to determine if the 

modification has affected any previously implemented subsets.  For exam- 

ple, modifying one i4ADAM stack instruction could prevent another one, 

already implemented, from functioning properly. 

.12.  If not, the new implementation is saved, as before. 

. 13.  However, if there is_ an impact, the user is notified. 

.14.  He can then decide if the impact srhould be permitted. 

.15.  If not, Super-CAD gives him the choice of trying again 

to modify the specification for the subset at block .9.  If he declines, 

control goes to the "no" side of block .8 to keep track of the unimple- 

mented subset at .7. 

An interesting enhancement here would be to insert a loop where the 

user could attempt to help Super-CAD modify the specification parti- 

tioning to arrive at different subsets.  In the MADAM example, perhaps 

the three interrelated stack manipulation instructions could all be com- 

bined into a single subset.  This concept is left for future work. 

.lb.  On the "yes" side of .14, if the user allows other 

implemented subsets to be affected, they must be identified.  A routine 
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flags those particular subsets.  Super-CAD then returns to the beginning 

of the loop to attempt to reimplement those that have been flagged.  The 

others will fall right back, through, since they do not require rework- 

ing.  Thus, the MADAM stack instruction specifications might each be 

modified to allow close implementations where they will operate together 

properly. 

This process will be effective precisely because, tor any subset 

affected Dy the changes to another, the system will immediately redo 

that implementation.  While this may require a number or iterations, 

each time the system goes through it, more of the specification will be 

satisfied, with a decreasing trend in the amount of computer work re- 

quired.  It is the user who decides if any changes should be made or 

impacts on other subsets allowed.  As before, the automatic mode will 

bypass any attempt to rework a close implementation. 

At the same time, Super-CAD must anticipate the possibility of 

"thrashing", where one modification leads to another, which leads to 

another, etc.  It would be up to the user to avoid this and choose to 

send subsets to the next level for implementation.  However, Super-CAD 

may have to suggest it to him after he has gone through a certain number 

of iterations without any progress. 

.17.  After a particular subset has been processed, this 

block runs a simple test to see if that was the final subset. 

.18.  If not, the index is incremented and the process con- 

tinues for the next subset. 

.19.  When all subsets have been processed, Super-CAD checks 

to see if any have not been implemented (e.g., by examining the "unim- 

plemented" table).  If none remain, the design is complete and it is 
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passed on to block 2.1.4 (figure 15).  Otherwise, the leftover 

behavioral subsets (e.g., any MADAM instructions not yet implemented) 

are sent to the Functional level. 

2.1.1 Summary.  Returning to block 2.1.1 on Figure 15, several 

points should be clarified.  The outputs of 2.1.1 have been described in 

the previous paragraphs.  The one on the right is the case where the 

whole set of specifications can be met by one complete behavioral level 

implementation.  On the left is the situation where the problem is solved 

completely at this level, but by implementing the specification in 

subsets.  The output at the bottom is for the case where a partial im- 

plementation of subsets occurs at tne Behavioral level.  This includes 

the situation where none of the subsets could be implemented.  Thus, the 

leftover subsets are passed down to the next level, including the situa- 

tion where they are all leftover. 

Since this part of the model is an area that has never been automa- 

ted in this way before, there are no existing tools to cite as examples. 

The Carnegie-Mellon work certainly operates at these levels, but the 

approach is quite different, as we shall see in the Comparison section. 

Thus, the tools to support the blocks of Figures 17 and 18 will have to 

be developed specifically for the Super-CAD system. 

2.1.2.  The Functional level performs in exactly the same way as 

the Behavioral level, with one important addition.  (See Figure 19.) 

2.1.2.1.  The addition is this block, which translates the 

remaining behavioral subsets into a Functional level specification. 

Altnough it is not decomposed further here, the block will be made up of 

several programs necessary to accomplish the translation.  Not the least 

of these would be one to duplicate the partitioning of the original 
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behavioral specification in the Specification stage.  Partitioning here 

could be along the lines of the behavioral subsets, or along other lines 

to facilitate implementation at this level. 

Continuing with the MADAM project example, the Functional level 

specification might retain the same instruction set partitioning. 

However, more detail is required, such as a decription of the register- 

transfers and functional operations necessary to perform the instruc- 

tions. 

2.1.2.2. The next block attempts to implement the whole func- 

tional specification, performing operations parallel to block 2.1.1.1. 

Figure 2U shows these operations.  Since this block of the model dupli- 

cates Figure 17, the constituent blocks will not be described sepa- 

rately.  Refer to the paragraphs under 2.1.1.1 for an explanation of the 

individual operations. 

2.1.2.3. (.Figure 19)  When the whole functional specification 

cannot be satisfied with a single implementation, Super-CAD again looks 

at subsets.  As in the previous paragraph, Figure 21 duplicates the 

operations of 2.1.1.2 in Figure 10.  The paragraphs under 2.1.1.2 ex- 

plain the equivalent operations. 

2.1.2 Summary.  Back at Figure 15, the block 2.1.2 outputs are 

similar to those of 2.1.1.  The only difference is the one on the right 

which might have to be interfaced with behavioral subset implementa- 

tions, and thus goes to 2.1.4 instead of 2.1.5.  For instance, some of 

MADAM's instructions may have been implemented as behavioral subsets and 

others as functional subsets. 

Again at this level most of the tools to support the operations will 

have to be created.  Thomas describes how the Caltech Silicon Compiler 
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operates at the functional level (Ref 12:1207), and some of the tech- 

niques might be useable by Super-CAD. 

2.1.3.  Any remaining subsets at the Functional level go down to 

the Logical level.  Once again the procedures are the same, except that 

this level has only one output.  This is the lowest level, and if a 

design cannot be completed with existing IC's, an additional block will 

synthesize new ones (Figure 22). 

2.1.3.1. First the leftover functional subsets are translated 

into a Logical level specification.  In the case of the MADAM instruc- 

tions, specific combinations of registers and designated modules (adder, 

multiplier, stack controller, etc.) would be described.  As before, 

Super-CAD tries first to find an implementation for the whole specifica- 

tion, and if that fails, seeks subset implementations. 

2.1.3.2. See Figure 23 and the explanation for 2.1.1.1. 

2.1.3.3. See Figure 24 and the explanation for 2.1.1.2. 

2.1.3.4. If any subsets still remain, the logic synthesis 

block is activated (Figure 25). 

.1.  First a set of tools partitions the subsets to prepare 

them for logic design.  With the MADAM design, the logical modules would 

be broken up further into basic building blocks (gates, flip-flops, 

etc.). 

.2.  Then logic synthesis programs take the subsets and 

apply elements from an appropriate cell library in the database to com- 

Dlete the design.  For example, the MADAM project, througn the Logic 

4/MP2D programs, used a CMOS/SOS cell library composed of 44 different 

gate-level components (Ref 25: Part I, 3-4).  This step and the previous 

one replace the manual logic synthesis actually used in the MADAM 
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design. 

.3.  Finally, a routine stores the logic designs in the 

database. 

2.1.3 Summary.  The last three blocks actually represent a 

very comp_ex portion of the system.  A lot of future work will be re- 

quired to fill them in.  However, tools are available to provide some 

guidance and support.  For example, PLA (Programmable Logic Array) chips 

and a variation, PAL (Programmable Array Logic), provide a certain 

amount of flexibility for VLSI by permitting custom programming (Kefs 

72:92; 7:1194; and 76:t>58).  Thomas describes several logic synthesis 

aids (Ref 12:1205-1209).  For example, ALERT was ar «^arly system, and it 

is further explained by Friedman and Yang (Ref 101).  Another was MIMOLA 

for designing digital processors.  (See also Refs 102 and 103.)  A 

highly interactive approach is being pursued at IBM for automatically 

generating a "detailed, technology-specific implementation" (Refs 

104:234 and 105:543).  In addition, CARS proposes a "top-down structured 

approach I for! digital synthesis" (Ref 106:529). 

Currently Super-CAD proposes to create new IC designs only at the 

Logical level.  Future work can expand it to encompass the Functional 

and Behavioral levels as well, especially as new and more sophisticated 

building blocks are added to the system.  Thus, complex uodules defined 

at the higher levels could be part of cell libraries at those levels. 

New IC designs could be created from such modules without requiring 

analysis at the logic level.  (The logic would be implicit in the mod- 

ules. ) 

2.1.4.  The next step (Figure 15), after the design has gone 

through all three levels of abstraction, is to gather together the 
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implementations trom the various levels.  It might appear from Figure 15 

that this "interlace" block is meant to combine all or the arrows that 

lead to it.  However, any one design problem follows only a single path 

to arrive at block 2.1.4.  Thus, interfacing actually combines all the 

implementations that occurred along that one path.  For instance, sup- 

pose within block 2.1.1 only a partial number of the MADAM behavioral 

subsets were implemented.  If the remainder were tnen implemented as a 

whole functional set within block 2.1.Z, then 2.1.4 would have to put 

these implementations together to satisfy the overall requirements for 

the design.  The greatest amount of interfacing would be required if 

implementations were found for only a partial number of subsets at each 

of the three levels, with the remainder becoming new circuits during 

logic synthesis. 

Recall that Super-CAD has kept track of the various implementations 

along the way.  Block 2.1.4 must now put them together.  Refer to Figure 

2b. 

.1.  First, a routine checks to see if the whole design was 

completed as a single implementation (at either the Functional or Logi- 

cal level) 

.2.  If so, the implementation is finalized with whatever 

bits-and-pieces are required (components such as registers, etc., that 

may be needed to support the overall requirement). 

.3. If a single implementation is not present, then the mul- 

tiple imr.'.ementation identifiers are examined to locate the implementa- 

tions themselves. 

.4.  Finally, these implementations are interfaced together. 

This may be a very involved process, as portions of the Functional and 
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Logical levels are recursively called to complete the interfaces and 

produce the final design.  Because of this complexity, great empnasis 

will be needed here in future work on the system. 

2.1.5.  The final block, of Figure 15 performs the same functions 

as 2.1.4.2, for the case when 2.1.1 produces a single implementation 

from the whole behavioral specification. 

2.1 Summary.  The central part of the model represented by 

Figure 15 and the lower level diagrams is a crucial element in the 

Super-CAD system.  Here the siigle input of a partitioned behavioral 

specification is molded into a single detailed design output.  It is a 

complex operation with the design effort following but one of many pos- 

sible paths.  As explained earlier in the Realization stage, this is 

largely hardware-oriented, with software design occurring as a part of 

it.  Software modules are included at each step of implementation until, 

in the Realization stage, they are broken out, coded, and tested.  As 

Super-CAD grows, this is an area that must be more sharply defined. 

2.2.  Going back to Figure 14, once block 2.1 produces a detailed 

design, it is time for Super-CAD to analyze it in biock 2.2 (Figure 27). 

2.2.1.  Figure 27 may appear deceptively simple when, in fact, 

simulations with the design can be quite complex.  Two things help to 

overcome the complexity.  First of all, designing with existing families 

of IC's means that those blocks have already been tested.  The only 

simulations required are for the interconnections and any new components 

or IC's added.  Secondly, the different levels of abstraction allow 

simulation of the designs at those levels.  It is possible to perform 

multi-level simulations to test all three levels at once.  The fact that 

different subsets may have been implemented at the different levels 
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means that partitioning boundaries already exist, facilitating the simu- 

lation. 

The Logic 4 program described in Chapter 1 is an example of a rela- 

tively simple simulator using manually formatted input at the Logical 

level (Ref 26).  The biggest limitation in applying Logic 4 to tne MADAM 

design was that it could not handle the whole design at once.  Designs 

of such magnitude will require VLSI-scale tools,  but implementing 

designs at higher levels of abstraction will also be helpful.  Thomas 

describes the benefits of increased speed and less memory requirements 

using multi-level simulations of VLSI designs (Ref 12:1210).  Hachtel 

also gives a pertinent discussion of VLSI circuit simulation with a 

"mixed mode" approach that can include (but is not limited to) the dif- 

ferent levels of abstraction (Ref 1U7 :1271>—1277).  Another mixed mode 

approach is DIANA, for "logic, timing, and circuit simulation" (Ref 

108:356). 

Specific examples of multi-level simulators include SABLE, a struc- 

tured approac'. being developed at Stanford (Refs 7b and 109).  Others 

are MULTI-SIM (Ref 110), MIXS (Ref 111), and an unnamed one described by 

Agrawal (Ref ll2).  The SARA system mentioned earlier (Refs 93-96) pur- 

sues "multi-level modeling" for a "range of behaviors" (Ref 94:63). 

Newton describes several other simulation programs developed at 

Berkeley, including SPICE, SPLICE, and SAMPLE (Refs 75 and 113).  An 

earlier approach has also applied PERT (Project Evaluation and Review 

Technique) analysis of critical paths to logic level simulation (Ref 

114:152).  The SCOAP program discussed in Chapter I, for analyzing the 

testability of digital circuits (Refs 29 and 30), can also be used at 

this part of Super-CAD. 
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Thus, a number of tools are available for use in digital design 

simulation; Super-CAD may incorporate some, and borrow useful techniques 

from others.  A current project at AF1T will be developing a function- 

al simulation tool (Ref 115) that can be used by Super-CAJJ.  An im- 

portant area for work is the need for tools to transform the different 

levels of the specification into test inputs for the multi-level 

simulations—a process that has usually been done manually by the de- 

signer. 

2.2.2. The next block in Figure 27, then, interacts with the 

user to determine if the results of the simulations are acceptable.  The 

results can be displayed on the terminal and can range from messages 

explaining simulation failures to complete simulation descriptions. 

Thus, in simulations with the MADAM microprocessor design, a user could 

quickly determine if it was functioning properly. 

2.2.3. If the results are not successful or the user is not 

satisfied, modifications can be made to the design, interactively.  At 

this point, optimization techniques may come into play.  Brayton de- 

scribes the APLSTAP and DELIGHT systems that work in conjunction with 

several simulation programs presented earlier (Ref 55:1356-1360).  When 

modifications are complete, the design leaves the analysis block (2.2, 

Figure 14) and the Implementation stage is finished.  The next section 

explains the Specification stage. 

Specification.  (Block 1, Figure 7)  The final stage for discussion 

is Specification.  It was saved until last because it will be the most 

difficult for Super-CAD to automate and will require significant ad- 

vances in design automation before it can be developed completely.  This 

section presents a general treatment of the problem to hopefully point 
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the direction for some of the future work. 

An important perspective on this problem is the application of 

software development techniques.  While Super-CAD is a design system for 

complete hardware/software packages, the development of the necessary 

specifications can benefit greatly from work that has already been done 

in software production. 

Essentially, the problem for the Specification stage is to transfrom 

a relatively simple, unstructured statement of the user's requirements 

into a well-structured behavioral specification that can be used by the 

Implementation stage.  For the MADAM project, that would mean transfor- 

ming the requirement to implement the subset of Ada instructions into a 

specification describing the overall behavior of the instructions.  we 

have already seen the need to employ top-down design and structured 

design methods (e.g., Refs 57:13U2 and b9:blbj.  These principles are 

especially important during Specification, where the automated design 

process must get off to a good start.  If the specification can be 

structured to support modularity, the design can be more "technology- 

independent", and it will be easier to process through the design sys-em 

(Ref 117:261). 

This approach requires an orderly, step-by-step process to define 

all of the behavior required of the design.  Early in the development of 

Super-CAD, when the rest of the system is getting set up, this part of 

the design will still be done manually.  As mentioned earlier, it may be 

bypassed entirely by using HDL/RTL inputs to the Implementation st-'^e. 

But requiring the designers to transform their requirements into one of 

these languages can be a complicated process.  It ia me of the ultimate 

goals of Super-CAD to overcome that necessity.  As the Specif l«. "•«"ion 
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stage evolves and tools are developed, the computer will take over more 

of these efforts and begin to work, interactively with the users.  In the 

progression toward a highly automated stage, the use of artificial in- 

telligence principles should be continually explored. 

The user should be able to tell the system tnat he wants a design 

that accomplishes a particular set of requirements.  Super-CAD will 

start asking him questions to establish parameters and constraints, make 

decisions based on the answers, and store the information in the data- 

base.  It may ask for clarification for some of the decisions or even 

offer a menu of possible options.  The goal is to produce a specifica- 

tion in a form that can be mapped to implementations at the different 

levels of abstraction. 

Partitioning.  It was previously explained that the specification 

must be highly structured and partitionable, to allow the system to 

assign subsets.  Three different approaches might be used in solving the 

partitioning problem.  The first is as described above where the user is 

responsible.  He can input requirements in a hardware description or 

register-transfer language that intrinsically imposes a high degree of 

partitioning.  The second approach is to make it the responsibility of 

the high order language used by the overall system.  The syntax and 

semantics of the language may impose partitioning boundaries as the 

user's input is translated.  The third approach is to have the program 

(Super-CAD) do it.  This would be through totally automated algorithms. 

Presently, there are no known ways to accomplish such automatic parti- 

tioning, so it is a significant area for future work.  This is a place 

where artificial intelligence may provide some important answers. 

Software Techniques.  A number of software engineering tools have 
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been developed in Che past decade, helping to define different phases of 

the software acquisition process.  Some of these tools ana techniques 

can be applied to the definition of a behavioral specification for a 

complete hardware-software system. 

Teichroew and Hershey at the University of Michigan have developed a 

technique for the "analysis and documentation of requirements and 

preparation of functional specifications" (Kef 118:41).  It is a CAD 

tool for software development that can offer some useful principles for 

Super-CAD.  Another tool is the Software Engineering Facility ^.SEF) 

described earlier (Kef 85).  It is really a collection of tools, some of 

which provide "automated support" for "requirements definition and 

analysis methods" to assist the user to achieve "maximum results with a 

minimum of effort" (Ref 85:36-37).  An example of a method supported by 

SEF is SADT* (Structured Analysis and Design Technique).  Douglas Ross 

provides a detailed discussion of requirements definition, structured 

analysis, and the application of SADT (Refs 119 and 120).  The Super-CAD 

system can adapt these techniques to the specification of overall sys- 

tems. 

DeMarco1s text (Ref 71) is an even more detailed description of 

structured analysis, and Yourdon and Constantine (Ref 7U) provide an 

explanation of structured design.  Although neither discussion addresses 

automation, many of the techniques are significant.  Structured design 

is a high level methodology for the design of the whole software system. 

It includes structured analysis as one of its tools.  Super-CAD should 

apply the principles of structured design in solving problems; namely, 

analyze the problem, produce a specification, partition it into modules, 

trademark, of Softech, Inc., waltham, MA 02154, 
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and develop the modules as "black boxes" (Kef 70:19,21). 

Systems Design Approach.  The Manufacturing Technology Division of 

the Air Force Materials Laboratory at Wright-Patterson Air Force Base 

employs a Requirements Engineering Methodology (REM) as part of their 

systems design approach to Integrated Computer-Aided Manufacturing 

(ICAM).  The "systems approach" is a structured one, with a solution to 

a problem found by decomposing it into smaller problems solved by the 

"development of subsystems" (Ref 122:2-1).  Decomposition of system 

requirements continues until "each subfunction . . . can be mapped u- 

niquely to one subsystem" (Ref 122:2-26).  This is further developed by 

the 1DEF (ICAM Definition) set of modeling methods.  The first method, 

IDEF "zero", "traces its origins to SADT" (Ref 123:B.b7).  It is a 

"structured decomposition—the orderly breaking down of a complex sub- 

ject into its constituent parts."  With it, the "method of describing a 

problem is top-down, modular, hierarcnic, and structured" (Ref 

123:B.71).  The system presents a different perspective that can enhance 

the Specification stage of Super-CAD through future work.  (See also 

Refs 124 and 128.) 

This general discussion of the Specification stage is represented in 

Figure 28, which expands block 1.  First the behavior of the desired 

system is formalized, and then it is partitioned into a specification. 

1.1.  Figure 29 shows two steps in identifying the required 

behavior of the new design.  Block 1.1.1 interacts with the user to 

receive the requirements and clarify them.  It draws on the database to 

present options to the user and sends a set of requirements to the next 

block.  The techniques of structured analysis will be important in this 

first block.  Block 1.1.2 transforms the requirements into a behavioral 

bl 
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definition.  This is where some of the REM procedures descriDed eariier 

can be appiied. 

1.2.  The next block (.Figure JO) handles the partitioning.  First 

(1.2.1) the behavior is analyzed to define the partition boundaries. 

Then it is divided into subsets (1.2.2).  it is assumed for this model 

that the suosets are mutually exclusive.  As they are divided aiong the 

partition lines, portions of the benavior may not fit well into any par- 

ticular subset.  These leftover elements can be combined into one or 

more additional subsets.  For example, it is possible that MADAM subset 

partitioning might not be strictly according to individual instructions. 

Since several have overlapping functions, a better partition might be 

according to the common functions, to maintain the mutually exclusive 

requirement.  In that case, the leftover instruction parts could be com- 

bined into other subsets.  After this process is complete, tne parti- 

tioned behavior then goes to the last block (1.2.3) to be formatted into 

a behavioral specification for the Implementation stage. 

While this project has addressed the Specification stage in very 

general terms, this stage will be a significant part of the Super-CAD 

system and should be developed fully by later efforts. 

Model Conclusion.  This, then, is the Super-CAD model.  Again, many 

of the specifics are only suggestions for how to develop it, anr* f_n.ure 

research may define alternate approaches for certain parts.  As stated 

earlier, the appendix reproduces the model diagrams, with the blocks 

placed in proper numerical order for ease of reference.  The next sec- 

tion draws some comparisons of this model with the Carnegie-Mellon pro- 

ject. 
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Comparison (.Rets 2, 12, 16, 17, and 36-49) 

The CMU-DA project is currently the most ambitious and well- 

documented effort for integrating the digital design process.  Many of 

the CMU tools have been successfully implemented and are producing en- 

couraging results.  A comparison between Super-CAD and CMU-DA can demon- 

strate similarities and differences to help put the Super-CAD model in 

perspective. 

Both approaches have the same general goal in mind, but with dif- 

ferent ways of accomplishing it.  That goal is to provide a high-level 

aid to digital designers in the age of very complex VLSI technologies. 

The biggest difference between the two is that at the present time 

Super-CAD is more a philosophy than a system.  While several design aids 

to support Super-CAD are under development, most apply to the Realiza- 

tion stage.  With the emphasis of Super-CAl) on the Implementation stage, 

more concrete work needs to be done in that area.  CMU-DA, on the other 

hand, has developed some effective tools for the Implementation stage. 

The major emphasis of CMU-DA, in fact, is automating many of the 

steps in design synthesis and offering "the designer a variety of im- 

plementations to choose from" (Ref 44:479).  Their input is a high-level 

"behavioral specification" which really corresponds more closely with 

Thomas' Functional level.  (Some of the authors, in fact, have called it 

a "functional specification" in some of the earlier papers.)  The input 

is in the ISP language, which means the designer must express his re- 

quirements in ISP form. 

Super-CAD, as we have seen, attempts to do many of the same things. 

It proposes to automate the synthesis process and suggests a methodology 

for solving portions of the problem at successive levels of abstraction. 

Ob 
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Where Super-CAD iterates through the different levels, CHU-DA seems to 

go more directly from the input level of abstraction to trie logic real- 

ization.  CMU-DA essentially ends when it has produced a design that can 

be sent to layout programs like MP2D.  Although Super-CAD could stop at 

that point, it really includes the layout of IC's and FCU's as part of 

its integrated effort.  At the other end of the spectrum, Super-CAD pro- 

poses to automate the Specification stage also. As a result, the de- 

signer will not have to understand the intricacies of a design language 

like IS? to enter his requirements into the system. 

Another difference between the two systems is in the type of im- 

plementation chosen.  Early in the design process, CMU-ÜA "decides on 

the specific style of design to be employed (e.g. , bit-slice micropro- 

cessor, MOS microprocessor, SSI/MSI logic)" (Ret 36:94).  Super-CAD 

basically does not settle on a specific design style, but instead relies 

on the libraries of various implementations available that might meet 

the requirements.  The type of design becomes more formalized as more 

implementations are chosen, limiting the additional modules that can be 

interfaced to them. A factor both systems snare, however, is in the 

flexibility to add new module sets as new designs and technologies 

become available. 

Overall, the two systems share a number of common goals and tech- 

niques.  Since CMU-DA has many tools at or near completion, the implemen- 

tation of Super-CAD can benefit immensely from these developments. 

Summary 

This has been a lengthy treatment of what constitutes the Super-CAD 

model.  In effect, it proposes a method to produce a top-down, struc- 

tured design that occurs in three stages.  First, the user inputs his 
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requirements and assists the computer in developing a behavioral speci- 

fication.  The computer then proceeds through the three levels of 

abstraction seeking existing inplementat ions and calling on the user to 

rule on "close" ones.  When potential existing solutions are exhausted, 

what remains of the specification is made into new circuit designs. 

Finally, the hardware and software components of the design are realized 

separately and integrated into a complete system design. 

The next chapter explains how this model fits into the design au- 

tomation research being conducted at AFIT. 

I 
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IV.  Super-CAD and AFIT 

"An in-depth, integrated, and comprehensive design automation pro- 

gram is about to get under way at AFIT."  Designed "to meet tne needs of 

DOD, the Air Force, and AFIT", it can "make a major impact in the future 

of design automation.  And the future of design automation will impact 

the future of military technology" (Ref 125:10).  With these words the 

current AFIT design automation program began in late lybl.  The previous 

decade had seen some important research in early CAD tools, especially 

with the CLODS efforts described in Chapter I (Refs 18-24).  Hut now, 

"as military systems complexities continue to increase", the school is 

accelerating its efforts to keep up with rapidly changing technology 

(Ref 125:1). 

In Ai'IT's view, DOD (the Department of Defense) must assure that 

qualified people are available to meet the challenge of the advancing 

technology. As an educational and research institution, AFIT can play a 

significant role by training Air Force personnel and conducting research 

efforts in design automation.  "This capablility is enhanced by faculty 

members expertly qualified in [DAJ to both guide ItheJ research landj 

consult, on a limited basis, for DOD organizations." (Ref 125:1)  The 

Super-CAD project marks the beginning of these efforts to focus on 

design automation. 

Plan 

It is important to examine AFIT's overall plan and see how Super-CAD 

fits into it. AFIT presently views design automation from three per- 

spectives.  The first is the hierarchical view represented by the three 

levels of abstraction that are at the heart of Super-CAD. The second 
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view concerns "the various design automation functions that can assist 

digital engineers" in designing systems (e.g., the difference between 

hardware and software design).  Finally, a third viewpoint highlights, 

at the physical level, the differences between 1C and PCB design, where 

"there can be distinct differences in complexity."  (Ref 125:1-2) 

With these perspectives as a basis, AF1T will pursue design automa- 

tion along several lines.  First, it will develop operational tools to 

support its projects,  üf prime concern are the "integrated circuit 

design courses" which need representative design aids.  Also, a number 

of other "thesis and class projects", both hardware and software, re- 

quire effective automated tools. (Ref 125:2) 

Second is research "on new design automation techniques (and valida- 

tion of current techniques)".  The focus will be on "man-machine inter- 

faces" such as "interactive symbolic languages, hardware description 

languages," and user-friendly programs.  Also important are developing a 

database to support system integration, using "heirarchical methods in 

design automation", and exploring "suboptimal techniques" as a means to 

support "VLSI/VHSIC complexities."  (Ref 125:2) 

Lastly, faculty "consultation to DÜD organizations" is a continuing 

AFIT requirement.  With design automation becoming more crucial, the 

AFIT research experience will strongly support consultation in this 

area. (Ref 125:2,4) 

The mechanism through which these goals will be accomplished is an 

integrated system incorporating all AFIT DA software, and organized 

around a central database system.  The "software will reside on a 

single, dedicated computer system [to bej called the Design Automation 

Hardware System." Efforts are underway to obtain a suitable system that 
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can be dedicated solely Co the DA research. (Ref 125:4,6) 

AF1T will develop software tools that can be directly interfaced to 

the database.  In addition, "other applications software", either "pub- 

lic domain or purchased", "will be interfaced I through] software written 

at AFIT."  The principles of software engineering will be emphasized 

throughout these developments to promote reliability and ease of tes- 

ting. (Ref 125:5) 

To organize these efforts, the school has developed a five-year 

plan.  The complete plan will not be presented here, but it is divided 

into several phases that will support the overall sequence of tasks 

shown in Figure 31. (Ref 123:5)  Of course, many of these tasks are 

interdisciplinary in nature and do not apply solely to design automa- 

tion.  For example, in block 7 artificial intelligence can be tied in to 

DA, but it is also important in other areas of study such as natural 

languages or speech- and pattern-recognition.  Thus, while some of the 

projects provide direct support of AFIT DA, others constitute related 

work with onxy partial applicability. 

The first step is to "specify and define system requirements".  Then 

AFIT will "define and develop the Design Automation Hardware System 

land] the data base software capability," while performing "continuing 

research in three major areas:  automated software design, archi- 

tectural-level design automation, and use of artificial intelligence 

to solve design automation problems."  When the hardware and database 

have been set up, integrating the DA development process and software 

tools will begin. (Ref 125:5) 

Specific Projects 

Super-CAD is the framework within which all of the DA software will 
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be integrated.  It constitutes a major part of the top block of Figure 

31 in defining system requirements.  It also contributes to block 6 for 

"architectural-level design automation" for VLSI/VHSIC "systems in the 

future" (Ref 125:5). 

The other AFIT projects currently in progress, as described in Chap- 

ters II and III, fit into various blocks of Figure 31.  The database 

being designed (Ref 65) applies to block 5.  The project for automated 

software development (Ref 121) is the first research effort supporting 

block 8.  Block 11 will benefit from the printed circuit ooard routing 

project (Ref 91).  Also, the research to apply artificial intelligence 

to circuit layout (Ref 86) will contribute to both blocks 11 and 7.  The 

functional simulation project (Ref 115) will produce an important tool 

for block 12.  Finally, the design of a graphics work station (Ref 58) 

will provide a significant input/output capability for the whole system. 

Other projects to support the system will be getting underway as more 

students enter the program and become interested ir design automation. 

A new one, in fact, on dynamic testing for integrated circuits has re- 

cently begun (Ref 126). 

Recommendations 

The various projects just described are a good start for implemen- 

ting Super-CAD.  A significant amount of work remains to be done, 

however.  As we shall see in the next chapter, some important follow-on 

efforts are required to further define the system and develop some con- 

crete solutions to a number of problem areas.  In addition, many of the 

specific tools under development at AFIT apply to the Realization stage 

of design.  A concerted effort is needed to develop the Implementation 

stage—to define and implement tools that can aid in the actual design 
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of a digital system.  The Specification stage requires an even greater 

effort to fill in what is currently just a general proposal.  Research 

can be performed, in conjuction with the Materials Laboratory, to define 

it better and address some of the problems. 

Once AFIT has implemented a few tools in support of Super-CAD, addi- 

tional projects will be required to interface them with each other in 

the overall system.  A key part of this is the development of the Execu- 

tive program. Also, while it is already part of the general AF1T plan, 

specific emphasis should be placed on incorporating existing tools into 

the system.  Valuable CAD tools are available, and many can be useful in 

Super-CAD, especially in the earlier stages when many holes will be 

present in the system. 

Summary 

Super-CAD is an integral part of AFIT's plans for work in design 

automation.  Or, to state it another way, the AFIT DA program—starting 

with the current five-year plan—will implement Super-CAD.  This major 

undertaking has already begun on several fronts.  The serious interest 

that the school has in DA is perhaps best exemplified by the First Annu- 

al Digital System Design Automation Workshop sponsored by AFIT and held 

in May, 1982.  It is planned as a yearly affair and should grow as the 

DA needs and capabilities of AFIT and the Air Force grow. 

"1 
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V.  Conclusion 

The approach to design automation represented by this project has 

grown out of the need to integrate many available computer-aided design 

tools and develop new ones for the era of highly complex integrated cir- 

cuits.  In a few short years VLSI and VHSIC chips will contain over a 

million devices.  Digital designers can no longer efficiently create 

designs for such circuits through manual methods.  To be effective, the 

future design process must rely on integrated sets of tools to assist 

the designer in all phases. 

As reflected in this report, the design process falls naturally into 

three general stages:  Specification, Implementation, and Realization 

(Figure 1).  Also, the design can be represented at three different 

levels of abstraction:  Behavioral, Functional, and Logical (Figure 2). 

If, during the Implementation stage, designs can be described at the 

higher levels, fewer details are involved and the design can proceed 

faster with less computer resources.  Then, in the Realization stage, 

building blocks containing the necessary details can be employed to com- 

plete the design. 

The evolution of design automation has seen a steady increase in 

automated tools and some efforts toward supporting design with existing 

IC's instead of only the design of new ones.  A number of examples have 

been used to show these trends, the most notable of which is the 

Carnegie-Mellon project.  The Super-CAD system proposed here will rely 

on much of this earlier work, and seek to extend it significantly. 

Ideally, the system will automate all the design stages and produce 

designs using existing families of circuits at each level of abstraction 

before creating any new circuits at the lowest level. 
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Super-CAD will be dual-purpose.  The overall, "complete" project 

will be an integrated system that provides as much design assistance as 

possible.  (It will never really be "complete," requiring continual 

enhancements.)  On the way to the overall configuration, however, it 

will be a valuable design aid in gathering many effective design tools 

together in one place.  Even in the advanced stages it will still offer 

the user a variety of individual tools to choose from. 

Recommendations 

Since the overall goal of this project has been a high-level defini- 

tion of the system, a significant amount of additional work is required 

to advance it toward realization.  Many recommendations have already 

been stated, in one form or another, in the previous chapters.  This 

section summarizes those recommendations and suggests additional areas 

to be examined in future research. 

The Model. 

1_.  Refine the Super-CAD model as follows: 

a_.  Address the initial assumptions:  mutually exclusive sub- 

sets, fixed hardware/software split, and combined data/control.  The 

model will be enhanced significantly when it can allow for specification 

subsets that are not mutually exclusive.  Also, the system can be more 

effective as a design aid if hardware and software development can be 

separated dynamically at a point more suited to the specific design 

problem.  The third assumption of combining data and control should be 

examined as well. 

b.     Examine alternative ways to expand the process blocks.  In 

the development of the model, specific decisions have been made to sug- 

gest one approach to the system.  Other possibilities can be examined 
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for suitable alternatives. Also, to better define the system, many of 

the process blocks in the Implementation stage should be decomposed to 

levels of greater detail. 

£.  Develop the Specification stage.  Specific steps are needed 

to define how an input of requirements from a designer can ultimately 

produce a set of specifications to be passed on to the Implementation 

stage. 

d_.  Enhance the Implementation stage.  Presently, Super-CAD pro- 

vides for creating new IC's based only on Logical level specifications. 

This can be expanded to include the same capability at the Functional 

and Behavioral levels.  The "interfacing" block (2.1.4.4) requires 

further definition to address how to combine the various subset im- 

plementations to work together.  This step may cause some of the indi- 

vidual implementations to be reworked.  Also, a mechanism should be de- 

fined for using the problem requirements to help produce test inputs for 

the simulation step (block 2.2.1).  Finally, more specifics on software 

development should be included in this stage. 

e_.  Examine the Realization stage for ways to refine current 

procedures. 

2,     Add the following capabilities to the model: 

a_.     User inputs to subset partitioning.  When the system is un- 

able to produce an adequate number of subset implementations, perhaps the 

partitioning is at fault.  A method is needed to draw the user interac- 

tively into revising the subset partitioning based on his knowledge of 

the requirements.  This may produce a more effective partitioning and 

lead to a successful implementation. 

b.  Validation.  Software Engineering includes the following 
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with the arrows showing validation of earlier steps.  An important area 

of research would be to determine if Super-CAD can break out of these 

constraints and be able to validate the first few steps much earlier, 

say by the middle levels. 

c^.  Testability.  Chapter II discussed the importance of testa- 

bility in complex digital designs.  Further studies are required to 

assure that Super-CAD incorporates suitable capabilities in this area. 

Tools. 

1_.  Define and implement languages for the design stages tnat are 

compatible with the model.  This report has proposed the use of hardware 

description and register-transfer languages as a way to input problems 

directly into the Implementation stage.  However, the system should also 

use a high order language that allows easy user inputs to the Specifica- 

tion stage.  Perhaps Ada can be that language.  Further study is re- 

quired, and some interesting questions arise.  At how low a level in the 

model can Ada (or any HOL) be used?  Can it be used to describe 

hardware?  For any process block, in the model that has an input in Ada, 

can its output be in Ada?  At what level does the answer become "no"? 

What are the alternatives to Ada, and is a single language enough?  Can 
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applicable data structures be built in Ada?  In fact, for any HOL, how 

will the problem be expressed in the language?  Some kind of a structure 

or specific constructs in the language will be needed so the problem can 

be described simply and easily.  These constructs can be in the form of 

modules accessed by the input.  The interactive nature of the system may 

mean that Super-CAD questions the user about his problem, perhaps or fers 

a menu of options, and activates modules based on the answers.  As sta- 

ted, this is an area for extensive future work. 

2.     Investigate the use of methods and techniques like artificial 

.Intelligence, group technology, etc., to implement tools for Super-CAD. 

Artificial intelligence has been mentioned several times in this report. 

Besides logic synthesis and specification development, it can be applied 

in many other parts of the model.  One project is already underway to 

apply it to circuit layout. 

_3.  Incorporate existing CAD tools.  Early work should emphasize 

tying together existing CAD programs in support of the Realization 

stage. This can provide early benefits to users in having the begin- 

nings of an integrated system. 

4_.  Define and implement tools in support of Super-CAD.  The 

Implementation stage has received the most attention in this report, but 

few automated tools are available to support it. Many must be devel- 

oped, from relatively straightforward procedures and subroutines to ra- 

ther complex programs.  An example of the latter is the operation to ;uap 

specification subsets to existing implementations.  The other stages, 

too, require specific tools to be developed, such as subset parti- 

tioned, layout routers for VLSI, simulators, etc. An extensive collec- 

tion of design tools is needed to accomplish the tasks proposed in the 
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model. 

Other. 

J^.  Investigate database technology for support of Super-CAD.  The 

database is a significant part of the system. A current project at AFIT 

will provide a foundation for development of an effective database sys- 

tem. 

2.     Examine the relevance of computer architectures to the im- 

plementation of Super-CAD.  Can the system be hardware/software indepen- 

dent so it can be easily adapted to many computer systems? 

^3.  Define and implement the Executive.  A primitive Executive 

should be developed first, to help interface the initial tools and in- 

teract with the user. As more of the system is implemented, the Execu- 

tive can be updated to accommodate the additions. 

4_.  Examine Initialization, Control and Timing, and Communication 

in the system.  These considerations must be addressed, and perhaps 

Super-CAD can interact with the user for help in solving them.  However, 

though they can be left to the user in tne short-term, they should even- 

tually be handled automatically by the system. 

_5.  Investigate process block interfaces. Work must be done to 

assure that the outputs of one process can interface directly with the 

next one.  The normal flow in the model supports "synthesis" within a 

process:  to produce a desired output from a given input.  However, can 

the flow be reversed?  Can the "analysis" task be performed by having a 

process examine a realization and determine what problem(s) it can solve? 

Is the mapping between inputs and outputs always "one-to-one"?  If 

it is "one-to-several" in the forward direction (synthesis), what is it 

in reverse (analysis)?  These are challenging questions for future 
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research. While Super-CAD proposes to automate the synthesis function, 

the important question is whether it can automate the analysis function 

as well. 

6_.  Predict future directions for Super-CAD.  While it is diffi- 

cult to predict what design aids will be required in the future, the 

Super-CAD system includes the flexibility to adapt as necessary to chang- 

ing requirements and technologies.  Future work with the system should 

seek to maintain that flexibility. 

Summary.  Many areas exist for significant future efforts to im- 

plement the Super-CAD system. A tentative time-table is suggested below 

for completion of different development phases.  If the system receives 

support from future AFIT projects, and outside research provides useful 

tools, the time-table can be met. 

Work should begin now, in 1982, to refine the model in the Implemen- 

tation and Realization stages. Also, efforts can begin to integrate 

some of the existing CAD programs, through the development of a primi- 

tive Executive.  This work would extend into the 1983-1984 time-frame. 

In the meantime, the first generation of support tools being developed 

at AFIT will be complete in 1983.  By then an effort to better define 

the Specification stage should have begun, and work to describe the 

additional capabilities can also commence.  At the same time, projects 

to design the next generation of support tools—especially for the 

Implementation stage—should get underway.  Finally, actual development 

of the database system should also get started. 

By 1985, major portions of the model should be clearly defined, work 

on the Specification stage should be progressing, and many tools suppor- 

ting the Realization stage should be a part of the system.  Gradually, 
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more cools will come into the Implementation stage, and a few will begin 

to automate the Specification stage.  Between 1985 and 1990 the full 

Executive can be in operation, with much of the Super-CAD structure filled 

in with design tools.  Many of the problems in automated Specifica- 

tion can be worked out, also.  In the decade of tne 9U's, Super-CAU can 

be an effective system for performing many digital design functions, 

while moving toward performing most of them. 

Final Thoughts 

The important thing is that, as the Super-CAD concept evolved out of 

trends in design automation, the system itself will evolve through many 

phases as more of it is defined and implemented.  Gradually it will 

shift from merely a collection of computer-aided design tools to a com- 

plete design automation package supporting all stages of the digital 

design process.  Its strength will lie in its adaptability to changing 

technologies and changing requirements.  It should become a friend of 

the user by providing individual tools on the one hand and a complete 

design system on the other.  It has the potential to become a signifi- 

cant part of design automation in the future of VLSI/VriSIC, and beyond. 
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